A DEEP LEARNING MODEL FOR ELECTRICITY DEMAND FORECASTING BASED ON A TROPICAL DATA
Article Sidebar
Open full text
Issue Vol. 16 No. 1 (2020)
-
A DEEP LEARNING MODEL FOR ELECTRICITY DEMAND FORECASTING BASED ON A TROPICAL DATA
Saheed A. ADEWUYI, Segun AINA, Adeniran I. OLUWARANTI5-17
-
A NOVEL PROFILE’S SELECTION ALGORITHM USING AI
Mario BELLO, Alejandra LUNA, Edmondo BONILLA, Crispin HERNANDEZ, Blanca PEDROZA, Alberto PORTILLA18-32
-
MODELING TRANSMISSION MECHANISMS WITH DETERMINATION OF EFFICIENCY
Denis RATOV, Vladimir LYFAR33-40
-
UNSUPERVISED DYNAMIC TOPIC MODEL FOR EXTRACTING ADVERSE DRUG REACTION FROM HEALTH FORUMS
Behnaz ESLAMI, Mehdi HABIBZADEH MOTLAGH, Zahra REZAEI, Mohammad ESLAMI, Mohammad AMIN AMINI41-59
-
FOOD DELIVERY BASED ON PSO ALGORITHM AND GOOGLE MAPS
Sergio SOTO, Edmondo BONILLA, Alberto PORTILLA, Jose C. HERNANDEZ, Oscar ATRIANO, Perfecto M. QUINTERO60-72
-
SOFTWARE FOR RECOGNITION OF CAR NUMBER PLATE
Mohanad ABDULHAMID, Njagi KINYUA73-84
-
INFORMATION MODEL OF SYSTEM OF SUPPORT OF DECISION MAKING DURING MANAGEMENT OF IT COMPANIES
Yehor TATARCHENKO, Volodymyr LYFAR, Halyna TATARCHENKO85-94
-
REMOTE HEALTH MONITORING: FALL DETECTION
Mohanad ABDULHAMID, Deng PETER95-102
Archives
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
-
Vol. 14 No. 4
2018-12-30 8
-
Vol. 14 No. 3
2018-09-30 8
-
Vol. 14 No. 2
2018-06-30 8
-
Vol. 14 No. 1
2018-03-30 7
Main Article Content
DOI
Authors
Abstract
Electricity demand forecasting is a term used for prediction of users’ consumption on the grid ahead of actual demand. It is very important to all power stakeholders across levels. The power players employ electricity demand forecasting for sundry purposes. Moreover, the government’s policy on its market deregulation has greatly amplified its essence. Despite numerous studies on the subject using certain classical approaches, there exists an opportunity for exploration of more sophisticated methods such as the deep learning (DL) techniques. Successful researches about DL applications to com¬puter vision, speech recognition, and acoustic computing problems are motivation. However, such researches are not sufficiently exploited for electricity demand forecasting using DL methods. In this paper, we considered specific DL techniques (LSTM, CNN, and MLP) to short-term load fore¬casting problems, using tropical institutional data obtained from a Transmission Company. We also test how accurate are predictions across the techniques. Our results relatively revealed models appropriateness for the problem.
Keywords:
References
Adewuyi, S., Aina, S., Uzunuigbe, M., Lawal, A., & Oluwaranti, A. (2019). An Overview of Deep Learning Techniques for Short-Term Electricity Load Forecasting. Applied Computer Science, 15(4), 75–92. https://doi.org/10.23743/acs-2019-31
Agrawal, R. K., Muchahary, F., & Tripathi, M. M. (2018). Long term load forecasting with hourly predictions based on long-short-term-memory networks. In 2018 IEEE Texas Power and Energy Conference (TPEC) (pp. 1–6). College Station, TX. DOI: https://doi.org/10.1109/TPEC.2018.8312088
Bengio, Y. (2009). Learning deep architectures for AI. Foundation and Trends in Machine Learning, 2(1), 1–127. DOI: https://doi.org/10.1561/2200000006
Bouktif, S., Ali, F., Ali, O., & Mohamed, A. S. (2018). Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches. Energies, 11, 1636–1656. DOI: https://doi.org/10.3390/en11071636
Brownlee, J. (2018). Deep learning for time series forecasting: Predicting the future with MLPs, CNNs and LSTMs in Python. V1.2 ed. M. L. Mastery.
Chengdong, L., Zixiang, D., Dongbin, Z., Jianqiang, Y., & Guiqing, Z. (2017). Building energy Consumption prediction: An extreme deep learning approach. Energies, 10(10), 1525–1545. DOI: https://doi.org/10.3390/en10101525
Deng, L. (2013). A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Transactions on Signal and Information Processing, 3(2). https://doi.org/10.1017/ATSIP. DOI: https://doi.org/10.1017/atsip.2013.9
Deng, L., & Yu, D. (2013). Deep learning: Methods and Applications. Foundations and Trends in Signal Processing, 7(3-4), 197–387. DOI: https://doi.org/10.1561/2000000039
Feinberg, E. A., & Genethliou, D. (2005). Load forecasting. In J. H. Chow, F. F. Wu, J. Momoh (Eds.), Applied Mathematics for Restructured Electric Power Systems. Power Electronics and Power Systems, Springer (pp. 269–285). Boston, MA. DOI: https://doi.org/10.1007/0-387-23471-3_12
Gamboa, J. (2017). Deep learning for time-series Analysis. arXiv: 1701.01887[cs. LG].
Ghullam, M. U., & Angelos, K. M. (2017). Short-term power load forecasting using deep neural networks. ICNC, 10(1109), 594–598.
Hamedmoghadam, H., Joorabloo, N., & Jalili, M. (2018). Australia's long-term electricity demand forecasting using deep neural networks, arXiv:1801.02148 [cs.NE].
Hernandez, L., Baladron, C., Aquiar, J. M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., Cook, D. J., Chinarro, D., & Gomez, J. (2012). A study of relationship between weather variables and electric power demand inside a smart grid/ smart world. MDPI Sensors, 22(9), 11571–11591. https://doi.org/10.3390/s120911571 DOI: https://doi.org/10.3390/s120911571
Hernandez, L., Baladron, C., Aquiar, J. M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., Cook, D. J., Chinarro, D., & Gomez, J. (2013). Short-term load forecasting for micro-grids based on artificial neural networks. MDPI Sensors, 6(3), 1385–1408. DOI: https://doi.org/10.3390/en6031385
Hernandez, L., Baladron, C., Aquiar, J. M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., Perez, F., Fernández, A., & Lloret, J. (2014). Artificial neural network for short-term load forecasting in distribution systems. MDPI Energies, 7(3), 1576–1598. DOI: https://doi.org/10.3390/en7031576
Hosein, S., & Hosein, P. (2017). Load forecasting using deep neural networks. In Proceedings of the Power and Energy Society Conference on Innovative Smart Grid Technologies (pp. 1–5). IEEE. DOI: https://doi.org/10.1109/ISGT.2017.8085971
Hussein, A. (2018). Deep Learning Based Approaches for Imitation Learning (Doctoral dissertation). Robert Gordon University, Aberden, Scotland.
International Energy Agency (IEA) Publications and data (n.n.). Retrieved August 12, 2018 from https://www.iea.org
Kuo, P., & Huang, C. (2018). A high-precision artificial neural networks model for short-term energy load management. Energy, 11(1), 213– 226. DOI: https://doi.org/10.3390/en11010213
Momani, M. A. (2013). Factors Affecting Electricity Demand in Jordan. Energy and Power Engineering, 5, 50–58. DOI: https://doi.org/10.4236/epe.2013.51007
Ronald, J. W., & Jing, P. (1990). An Efficient Gradient-Based Algorithm for On-Line Training of Recurrent Network Trajectories. Neural Computation, 2, 490–501. DOI: https://doi.org/10.1162/neco.1990.2.4.490
Sarabjit, S., & Rupinderjit, S. (2013). ARIMA Based Short Term Load Forecasting for Punjab Region. IJSR, 4(6), 1919–1822.
Schmidhuber, J., & Sepp, H. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. DOI: https://doi.org/10.1162/neco.1997.9.8.1735
Seunghyoung, R., Hongseok, K., & Jaekoo, N. (2017). Deep neural network based demand side short term load forecasting. Energies MDPI, 10(1), 3–23. DOI: https://doi.org/10.3390/en10010003
Stuart, R., & Norvig, P. (2013). Artificial Intelligence A modern Approach. Second ed. Prentice Hall.
Sutskever, I. (2013). Training Rucurrent Neural Net-works (Doctoral dissertation). Computer Science, University of Toronto, Toronto.
Swalin, A. (2018). How to Handle Missing Data. Towards Data Science. https://towardsdatascience.com/how-to-handle-missing-data-8646b18db0d4 on 18/01/19.
Wan, H. (2014). Deep Neural Network Based Load Forecast. Computer Modelling and New Technologies, 18(3), 258–262.
Yi, Y., Jie, W., Yanhua, C., & Caihong, L. (2013). A New Strategy for Short-Term Load Forecasting. Hindawi, 2013, 208964. https://doi.org/10.1155/2013/208964 DOI: https://doi.org/10.1155/2013/208964
Article Details
Abstract views: 514
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
