STUDY ON DEEP LEARNING MODELS FOR THE CLASSIFICATION OF VR SICKNESS LEVELS
Article Sidebar
Open full text
Issue Vol. 20 No. 4 (2024)
-
STUDY ON DEEP LEARNING MODELS FOR THE CLASSIFICATION OF VR SICKNESS LEVELS
Haechan NA, Yoon Sang KIM1-13
-
ENHANCING TOMATO LEAF DISEASE DETECTION THROUGH MULTIMODAL FEATURE FUSION
Puja SARAF, Jayantrao PATIL, Rajnikant WAGH14-38
-
NOVEL MULTI-MODAL OBSTRUCTION MODULE FOR DIABETES MELLITUS CLASSIFICATION USING EXPLAINABLE MACHINE LEARNING
Reehana SHAIK, Ibrahim SIDDIQUE39-62
-
COMPUTATIONAL SYSTEM FOR EVALUATING HUMAN PERCEPTION IN VIDEO STEGANOGRAPHY
Marcin PERY, Robert WASZKOWSKI63-76
-
PUPIL DIAMETER AND MACHINE LEARNING FOR DEPRESSION DETECTION: A COMPARATIVE STUDY WITH DEEP LEARNING MODELS
Islam MOHAMED, Mohamed EL-WAKAD, Khaled ABBAS, Mohamed ABOAMER, Nader A. Rahman MOHAMED77-99
-
CLASSIFICATION AND PREDICTION OF BENTHIC HABITAT FROM SCIENTIFIC ECHOSOUNDER DATA: APPLICATION OF MACHINE LEARNING ALGORITHMS
Baigo HAMUNA, Sri PUJIYATI, Jonson Lumban GAOL, Totok HESTIRIANOTO100-116
-
ENHANCEMENT OF ARTIFICIAL IMMUNE SYSTEMS FOR THE TRAVELING SALESMAN PROBLEM THROUGH HYBRIDIZATION WITH NEIGHBORHOOD IMPROVEMENT AND PARAMETER FINE-TUNING
Peeraya THAPATSUWAN, Warattapop THAPATSUWAN, Chaichana KULWORATIT117-137
-
EVALUATING LARGE LANGUAGE MODELS FOR MEDICAL INFORMATION EXTRACTION: A COMPARATIVE STUDY OF ZERO-SHOT AND SCHEMA-BASED METHODS
Zakaria KADDARI, Ikram El HACHMI, Jamal BERRICH, Rim AMRANI, Toumi BOUCHENTOUF138-148
-
EXPLORING THE EXPEDIENCY OF BLOCKCHAIN-BASED SOLUTIONS: REVIEW AND CHALLENGES
Francisco Javier MORENO ARBOLEDA, Georgia GARANI, Sergio Andrés ARBOLEDA ZULUAGA149-174
-
FEASIBILITY OF USING LOW-PARAMETER LOCAL LLMS IN ANSWERING QUESTIONS FROM ENTERPRISE KNOWLEDGE BASE
Marcin BADUROWICZ, Stanisław SKULIMOWSKI, Maciej LASKOWSKI175-191
-
SHARPNESS IMPROVEMENT OF MAGNETIC RESONANCE IMAGES USING A GUIDED-SUBSUMED UNSHARP MASK FILTER
Manar AL-ABAJI, Zohair AL-AMEEN192-210
-
FUZZY REGION MERGING WITH HIERARCHICAL CLUSTERING TO FIND OPTIMAL INITIALIZATION OF FUZZY REGION IN IMAGE SEGMENTATION
Wawan GUNAWAN211-220
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
Virtual Reality (VR) sickness is often accompanied by symptoms such as nausea and dizziness, and a prominent theory explaining this phenomenon is the sensory conflict theory. Recently, studies have used Deep Learning to classify VR sickness levels; however, there is a paucity of research on Deep Learning models that utilize both visual information and motion data based on sensory conflict theory. In this paper, the authors propose a parallel merging of a Deep Learning model (4bay) to classify the level of VR sickness by utilizing the user's motion data (HMD, controller data) and visual data (rendered image, depth image) based on sensory conflict theory. The proposed model consists of a visual processing module, a motion processing module, and an FC-based VR sickness level classification module. The performance of the proposed model was compared with that of the developed models at the time of design. As a result of the comparison, it was confirmed that the proposed model performed better than the single model and the merged (2bay) model in classifying the user's VR sickness level.
Keywords:
References
Du, M., Cui, H., Wang, Y., & Duh, H. B. L. (2021). Learning from deep stereoscopic attention for simulator sickness prediction. IEEE Transactions on Visualization and Computer Graphics, 29(2), 1415-1423. https://doi.org/10.1109/TVCG.2021.3115901 DOI: https://doi.org/10.1109/TVCG.2021.3115901
Falkowicz, K., & Kulisz, M. (2024). Prediction of buckling behaviour of composite plate element using artificial neural networks. Advances in Science and Technology. Research Journal, 18(1). https://doi.org/10.12913/22998624/177399 DOI: https://doi.org/10.12913/22998624/177399
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual Learning for image recognition. IEEE conference on computer vision and pattern recognition (CVPR) (pp. 770-778). IEEE. https://doi.org/10.1109/CVPR.2016.90 DOI: https://doi.org/10.1109/CVPR.2016.90
Jeong, D., Paik, S., Noh, Y., & Han, K. (2023). MAC: multimodal, attention-based cybersickness prediction modeling in virtual reality. Virtual Reality, 27(3), 2315-2330. https://doi.org/10.1007/s10055-023-00804-0 DOI: https://doi.org/10.1007/s10055-023-00804-0
Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., & Maciejewski, M. (2023). Comparison of selected classification methods based on Machine Learning as a diagnostic tool for knee joint cartilage damage based on generated vibroacoustic processes. Applied Computer Science, 19(4), 136-150. https://doi.org/10.35784/acs-2023-40 DOI: https://doi.org/10.35784/acs-2023-40
Keshavarz, B., Peck, K., Rezaei, S., & Taati, B. (2022). Detecting and predicting visually induced motion sickness with physiological measures in combination with Machine Learning techniques. International Journal of Psychophysiology, 176, 14-26. https://doi.org/10.1016/j.ijpsycho.2022.03.006 DOI: https://doi.org/10.1016/j.ijpsycho.2022.03.006
Kulisz, M., Kujawska, J., Cioch, M., Cel, W., & Pizoń, J. (2024). Comparative analysis of Machine Learning methods for predicting energy recovery from waste. Applied Sciences, 14(7), 2997. https://doi.org/10.3390/app14072997 DOI: https://doi.org/10.3390/app14072997
Kundu, R. K., Islam, R., Quarles, J., & Hoque, K. A. (2023). LiteVR: Interpretable and lightweight cybersickness detection using explainable AI. 2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR) (pp. 609-619). IEEE. https://doi.org/10.1109/VR55154.2023.00076 DOI: https://doi.org/10.1109/VR55154.2023.00076
LaViola, Jr, J. J. (2000). A discussion of cybersickness in virtual environments. ACM Sigchi Bulletin, 32(1), 47-56. https://doi.org/10.1145/333329.333344 DOI: https://doi.org/10.1145/333329.333344
Lim, H. K., Ji, K., Woo, Y. S., Han, D. U., Lee, D. H., Nam, S. G., & Jang, K. M. (2021). Test-retest reliability of the virtual reality sickness evaluation using electroencephalography (EEG). Neuroscience Letters, 743, 135589. https://doi.org/10.1016/j.neulet.2020.135589 DOI: https://doi.org/10.1016/j.neulet.2020.135589
Monteiro, D., Liang, H. N., Tang, X., & Irani, P. (2021). Using trajectory compression rate to predict changes in cybersickness in virtual reality games. 2021 IEEE international symposium on mixed and augmented reality (ISMAR), (pp. 138-146). IEEE. https://doi.org/10.1109/ISMAR52148.2021.00028 DOI: https://doi.org/10.1109/ISMAR52148.2021.00028
Ng, A. K. T., Chan, L. K. Y., & Lau, H. Y. K. (2020). A study of cybersickness and sensory conflict theory using a motion-coupled virtual reality system. Displays, 61, 101922. https://doi.org/10.1016/j.displa.2019.08.004 DOI: https://doi.org/10.1016/j.displa.2019.08.004
Shimada, S., Ikei, Y., Nishiuchi, N., & Yem, V. (2023a). Study of cybersickness prediction in real time using eye tracking data. 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) (pp. 871-872). IEEE. https://doi.org/10.1109/VRW58643.2023.00278 DOI: https://doi.org/10.1109/VRW58643.2023.00278
Shimada, S., Pannattee, P., Ikei, Y., Nishiuchi, N., & Yem, V. (2023b). High-frequency cybersickness prediction using Deep Learning techniques with eye-related indices. IEEE Access, 11, 95825-95839. https://doi.org/10.1109/ACCESS.2023.3312216 DOI: https://doi.org/10.1109/ACCESS.2023.3312216
Shodipe, O. E., & Allison, R. S. (2023). Modelling the relationship between the objective measures of car sickness. 2023 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) (pp. 570-575). IEEE. https://doi.org/10.1109/CCECE58730.2023.10289000 DOI: https://doi.org/10.1109/CCECE58730.2023.10289000
Wang, J., Liang, H. N., Monteiro, D. V., Xu, W., Chen, H., & Chen, Q. (2020). Real-time detection of simulator sickness in virtual reality games based on players' psychophysiological data during gameplay. 2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct) (pp. 247-248). IEEE. https://doi.org/10.1109/ISMAR-Adjunct51615.2020.00071 DOI: https://doi.org/10.1109/ISMAR-Adjunct51615.2020.00071
Wen, E., Gupta, C., Sasikumar, P., Billinghurst, M., Wilmott, J., Skow, E., Dey. A., & Nanayakkara, S. (2024). VR. net: A real-world dataset for virtual reality motion sickness research. IEEE Transactions on Visualization and Computer Graphics, 30(5), 2330-2336. https://doi.org/10.1109/TVCG.2024.3372044 DOI: https://doi.org/10.1109/TVCG.2024.3372044
Yang, A. H. X., Kasabov, N., & Cakmak, Y. O. (2022). Machine Learning methods for the study of cybersickness: A systematic review. Brain Informatics, 9(1), 24. https://doi.org/10.1186/s40708-022-00172-6 DOI: https://doi.org/10.1186/s40708-022-00172-6
Younis, M. C. (2024). Prediction of patient’s willingness for treatment of mental illness using Machine Learning approaches. Applied Computer Science, 20(2), 175-193. https://doi.org/10.35784/acs-2024-23 DOI: https://doi.org/10.35784/acs-2024-23
Zhao, J., Tran, K. T., Chalmers, A., Hoh, W. K., Yao, R., Dey, A., Wilmott, J., Lin, J., Billinghurst, M., Lindeman, & Rhee, T. (2023). Deep Learning-based simulator sickness estimation from 3D motion. 2023 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (pp. 39-48). IEEE. https://doi.org/10.1109/ISMAR59233.2023.00018 DOI: https://doi.org/10.1109/ISMAR59233.2023.00018
Article Details
Abstract views: 550
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
