LANA-YOLO: Road defect detection algorithm optimized for embedded solutions
Article Sidebar
Open full text
Issue Vol. 21 No. 1 (2025)
-
A multi-modal transformer-based model for generative visual dialog system
Ghada ELSHAMY, Marco ALFONSE, Islam HEGAZY, Mostafa AREF1-17
-
Spatial identification of manipulable objects for a bionic hand prosthesis
Yurii LOBUR, Kostiantyn VONSEVYCH, Natalia BEZUGLA18-30
-
Numerical modelling and comparison of SIF in pipelines exposed to internal pressure with longitudinal crack using XFEM method
Aya BARKAOUI, Mohammed EL MOUSSAID, Hassane MOUSTABCHIR31-43
-
Machine learning evidence towards eradication of malaria burden: A scoping review
Idara JAMES, Veronica OSUBOR44-69
-
Harnessing multi-source data for AI-driven oncology insights: Productivity, trend, and sentiment analysis
Wissal EL HABTI, Abdellah AZMANI70-82
-
The evolution and impact of artificial intelligence in market analysis: A quantitative bibliometric exploration of the past thirty-five (35) years
Donalson WILSON, Abdellah AZMANI83-96
-
Structural equation modeling (SEM) in Jamovi: An example of analyzing the impact of factors on the innovation activity of enterprises
Assel SADENOVA, Oxana DENISSOVA, Marina KOZLOVA, Saule RAKHIMOVA, Arkadiusz GOLA, Saltanat SUIEUBAYEVA97-110
-
Enhancing intrusion detection systems: Innovative deep learning approaches using CNN, RNN, DBN and autoencoders for robust network security
Yakub HOSSAIN, Zannatul FERDOUS, Tanzillah WAHID, Md. Torikur RAHMAN, Uttam Kumar DEY, Mohammad Amanul ISLAM111-125
-
A systematic literature review of diabetes prediction using metaheuristic algorithm-based feature selection: Algorithms and challenges method
Sirmayanti, Pulung Hendro PRASTYO, Mahyati, Farhan RAHMAN126-142
-
A concept for a production flow control system toolset for discrete manufacturing of mechanical products
Jarosław CHROBOT143-153
-
Optimizing customer relationship management through AI for service effectiveness: Systematic literature review
Aji HARTANTO, VERONICA, Danang PRIHANDOKO153-163
-
LANA-YOLO: Road defect detection algorithm optimized for embedded solutions
Paweł TOMIŁO164-181
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
Poor pavement condition leads to increased risk of accidents, vehicle damage, and reduced transportation efficiency. The author points out that traditional methods of monitoring road conditions are time-consuming and costly, so a modern approach based on the use of developed neural network model is presented. The main aim of this paper is to create a model that can infer in real time, with less computing power and maintaining or improving the metrics of the base model, YOLOv8. Based on this assumption, the architecture of the LANA-YOLOv8 (Large Kernel Attention Involution Asymptotic Feature Pyramid) is proposed. The model's architecture is tailored to operate in environments with limited resources, including single-board minicomputers. In addition, the article presents Basic Involution Block (BIB) that uses the involution layer to provide better performance at a lower cost than convolution layers. The model was compared with other architectures on a public dataset as well as on a dataset specially created for these purposes. The developed solution has lower computing power requirements, which translates into faster inference times. At the same time, the developed model achieved better results in validation tests against the base model.
Keywords:
References
Akyon, F. C., Altinuc, S. O., & Temizel, A. (2022). Slicing aided hyper inference and fine-tuning for small object detection. International Conference on Image Processing (ICIP) (pp. 966–970). IEEE. https://doi.org/10.1109/ICIP46576.2022.9897990 DOI: https://doi.org/10.1109/ICIP46576.2022.9897990
Arya, D., Maeda, H., Ghosh, S. K., Toshniwal, D., Omata, H., Kashiyama, T., & Sekimoto, Y. (2022). Crowdsensing-based road damage detection challenge (CRDDC’2022). 2022 IEEE International Conference on Big Data (Big Data) (pp. 6378–6386). IEEE. https://doi.org/10.1109/BIGDATA55660.2022.10021040 DOI: https://doi.org/10.1109/BigData55660.2022.10021040
Arya, D., Maeda, H., Kumar Ghosh, S., Toshniwal, D., Omata, H., Kashiyama, T., & Sekimoto, Y. (2020). Global road damage detection: State-of-the-art solutions. 2020 IEEE International Conference on Big Data (Big Data) (pp. 5533–5539). IEEE. https://doi.org/10.1109/BIGDATA50022.2020.9377790 DOI: https://doi.org/10.1109/BigData50022.2020.9377790
Bai, R., Shen, F., Wang, M., Lu, J., & Zhang, Z. (2023). Improving detection capabilities of YOLOv8-n for small objects in remote sensing imagery: Towards better precision with simplified model complexity. https://doi.org/10.21203/RS.3.RS-3085871/V1 DOI: https://doi.org/10.21203/rs.3.rs-3085871/v1
Bhattacharya, S., Jha, H., & Nanda, R. P. (2022). Application of IoT and artificial intelligence in road safety. 2022 International Conference on Interdisciplinary Research in Technology and Management (IRTM) (pp. 1-6). IEEE. https://doi.org/10.1109/IRTM54583.2022.9791529 DOI: https://doi.org/10.1109/IRTM54583.2022.9791529
cvat-ai / cvat. (2025, March 21). Annotate better with CVAT, the industry-leading data engine for machine learning. Used and trusted by teams at any scale, for data of any scale. GitHub. Retrieved September 24, 2024 from https://github.com/cvat-ai/cvat
Fu, R., Hu, Q., Dong, X., Guo, Y., Gao, Y., & Li, B. (2020). Axiom-based Grad-CAM: Towards accurate visualization and explanation of CNNs. ArXiv, abs/2008.02312v4. https://arxiv.org/abs/2008.02312v4
Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., & Xu, C. (2020). GhostNet: More features from cheap operations. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (pp. 1577–1586). IEEE. https://doi.org/10.1109/CVPR42600.2020.00165 DOI: https://doi.org/10.1109/CVPR42600.2020.00165
Jakobsen, M. D., Glies Vincents Seeberg, K., Møller, M., Kines, P., Jørgensen, P., Malchow-Møller, L., Andersen, A. B., & Andersen, L. L. (2023). Influence of occupational risk factors for road traffic crashes among professional drivers: Systematic review. Transport Reviews, 43(3), 533–563. https://doi.org/10.1080/01441647.2022.2132314 DOI: https://doi.org/10.1080/01441647.2022.2132314
Jiang, Y. (2024). Road damage detection and classification using deep neural networks. Discover Applied Sciences, 6, 421. https://doi.org/10.1007/s42452-024-06129-0 DOI: https://doi.org/10.1007/s42452-024-06129-0
Li, D., Hu, J., Wang, C., Li, X., She, Q., Zhu, L., Zhang, T., & Chen, Q. (2021). Involution: Inverting the inherence of convolution for visual recognition. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 12316–12325). IEEE. https://doi.org/10.1109/CVPR46437.2021.01214 DOI: https://doi.org/10.1109/CVPR46437.2021.01214
Li, H., Li, J., Wei, H., Liu, Z., Zhan, Z., & Ren, Q. (2024). Slim-neck by GSConv: a lightweight-design for real-time detector architectures. Journal of Real-Time Image Processing, 21, 62. https://doi.org/10.1007/S11554-024-01436-6 DOI: https://doi.org/10.1007/s11554-024-01436-6
Li, Y., Hou, Q., Zheng, Z., Cheng, M. M., Yang, J., & Li, X. (2023). Large selective kernel network for remote sensing object detection. IEEE International Conference on Computer Vision (pp. 16748–16759). IEEE. https://doi.org/10.1109/ICCV51070.2023.01540 DOI: https://doi.org/10.1109/ICCV51070.2023.01540
Liu, G., Reda, F. A., Shih, K. J., Wang, T.-C., Tao, A., & Catanzaro, B. (2018). Image inpainting for irregular holes using partial convolutions. In V. Ferrari, M. Hebert, C. Sminchisescu, & Y. Weiss (Eds.), Computer Vision – ECCV 2018 (Vol. 11215, pp. 89–105). Springer International Publishing. https://doi.org/10.1007/978-3-030-01252-6_6 DOI: https://doi.org/10.1007/978-3-030-01252-6_6
Liu, J., Zhang, S., Ma, Z., Zeng, Y., & Liu, X. (2023). A workpiece-dense scene object detection method based on improved YOLOv5. Electronics, 12(13), 2966. https://doi.org/10.3390/ELECTRONICS12132966 DOI: https://doi.org/10.3390/electronics12132966
Liu, Q., Huang, W., Duan, X., Wei, J., Hu, T., Yu, J., Huang, J., Liu, Q., Huang, W., Duan, X., Wei, J., Hu, T., Yu, J., & Huang, J. (2023). DSW-YOLOv8n: A new underwater target detection algorithm based on improved YOLOv8n. Electronics, 12(18), 3892. https://doi.org/10.3390/ELECTRONICS12183892 DOI: https://doi.org/10.3390/electronics12183892
Liu, S., Huang, D., & Wang, Y. (2019). Learning spatial fusion for single-shot object detection. ArXiv, abs/1911.09516v2. https://arxiv.org/abs/1911.09516v2
Ouyang, D., He, S., Zhang, G., Luo, M., Guo, H., Zhan, J., & Huang, Z. (2023). Efficient multi-scale attention module with cross-spatial learning. IEEE International Conference on Acoustics, Speech and Signal Processing – Proceedings (ICASSP) (pp. 1-5). IEEE. https://doi.org/10.1109/ICASSP49357.2023.10096516 DOI: https://doi.org/10.1109/ICASSP49357.2023.10096516
Ranyal, E., Sadhu, A., & Jain, K. (2022). Road condition monitoring using smart sensing and artificial intelligence: A review. Sensors, 22(8), 3044. https://doi.org/10.3390/S22083044 DOI: https://doi.org/10.3390/s22083044
Tang, Z., Chamchong, R., & Pawara, P. (2023). A comparison of road damage detection based on YOLOv8. International Conference on Machine Learning and Cybernetics (pp. 223–228). IEEE. https://doi.org/10.1109/ICMLC58545.2023.10327993 DOI: https://doi.org/10.1109/ICMLC58545.2023.10327993
Tomiło, P. (2024, October 1). CoCG Road Condition - Detection Dataset (CoCGRCDD). Mendeley Data. https://doi.org/10.17632/SNYYFKNW56.1
Tomiło, P., Oleszczuk, P., Laskowska, A., Wilczewska, W., & Gnapowski, E. (2024). Effect of architecture and inferencep of artificial neural network models in the detection task on energy demand. Energies, 17(21), 5417. https://doi.org/10.3390/EN17215417 DOI: https://doi.org/10.3390/en17215417
Wang, J., Meng, R., Huang, Y., Zhou, L., Huo, L., Qiao, Z., & Niu, C. (2024). Road defect detection based on improved YOLOv8s model. Scientific Reports, 14, 16758. https://doi.org/10.1038/s41598-024-67953-3 DOI: https://doi.org/10.1038/s41598-024-67953-3
Wang, X., Gao, H., Jia, Z., & Li, Z. (2023). BL-YOLOv8: An improved road defect detection model based on YOLOv8. Sensors, 23(20), 8361. https://doi.org/10.3390/S23208361 DOI: https://doi.org/10.3390/s23208361
Xing, Y., Han, X., Pan, X., An, D., Liu, W., & Bai, Y. (2024). EMG-YOLO: road crack detection algorithm for edge computing devices. Frontiers in Neurorobotics, 18, 1423738. https://doi.org/10.3389/FNBOT.2024.1423738 DOI: https://doi.org/10.3389/fnbot.2024.1423738
Xu, H. (2022). FCD-YOLO: Improved YOLOv5 based on decoupled head and attention mechanism for defect detection on printed circuit board. 2022 2nd International Conference on Networking Systems of AI (INSAI) (pp. 7–11). IEEE. https://doi.org/10.1109/INSAI56792.2022.00011 DOI: https://doi.org/10.1109/INSAI56792.2022.00011
Yang, G., Lei, J., Zhu, Z., Cheng, S., Feng, Z., & Liang, R. (2023). AFPN: Asymptotic feature pyramid network for object detection. IEEE International Conference on Systems, Man and Cybernetics (pp. 2184–2189). IEEE. https://doi.org/10.1109/SMC53992.2023.10394415 DOI: https://doi.org/10.1109/SMC53992.2023.10394415
Zhou, Y., & Yang, K. (2022). Exploring TensorRT to improve real-time inference for deep learning. 2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys) (pp. 2011–2018). IEEE. https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00299 DOI: https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00299
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., & Dai, J. (2020). Deformable DETR: Deformable transformers for end-to-end object detection. ArXiv, abs/2010.04159v4. https://arxiv.org/abs/2010.04159v4
Article Details
Abstract views: 327
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
