CLASSIFICATION AND PREDICTION OF BENTHIC HABITAT FROM SCIENTIFIC ECHOSOUNDER DATA: APPLICATION OF MACHINE LEARNING ALGORITHMS
Article Sidebar
Open full text
Issue Vol. 20 No. 4 (2024)
-
STUDY ON DEEP LEARNING MODELS FOR THE CLASSIFICATION OF VR SICKNESS LEVELS
Haechan NA, Yoon Sang KIM1-13
-
ENHANCING TOMATO LEAF DISEASE DETECTION THROUGH MULTIMODAL FEATURE FUSION
Puja SARAF, Jayantrao PATIL, Rajnikant WAGH14-38
-
NOVEL MULTI-MODAL OBSTRUCTION MODULE FOR DIABETES MELLITUS CLASSIFICATION USING EXPLAINABLE MACHINE LEARNING
Reehana SHAIK, Ibrahim SIDDIQUE39-62
-
COMPUTATIONAL SYSTEM FOR EVALUATING HUMAN PERCEPTION IN VIDEO STEGANOGRAPHY
Marcin PERY, Robert WASZKOWSKI63-76
-
PUPIL DIAMETER AND MACHINE LEARNING FOR DEPRESSION DETECTION: A COMPARATIVE STUDY WITH DEEP LEARNING MODELS
Islam MOHAMED, Mohamed EL-WAKAD, Khaled ABBAS, Mohamed ABOAMER, Nader A. Rahman MOHAMED77-99
-
CLASSIFICATION AND PREDICTION OF BENTHIC HABITAT FROM SCIENTIFIC ECHOSOUNDER DATA: APPLICATION OF MACHINE LEARNING ALGORITHMS
Baigo HAMUNA, Sri PUJIYATI, Jonson Lumban GAOL, Totok HESTIRIANOTO100-116
-
ENHANCEMENT OF ARTIFICIAL IMMUNE SYSTEMS FOR THE TRAVELING SALESMAN PROBLEM THROUGH HYBRIDIZATION WITH NEIGHBORHOOD IMPROVEMENT AND PARAMETER FINE-TUNING
Peeraya THAPATSUWAN, Warattapop THAPATSUWAN, Chaichana KULWORATIT117-137
-
EVALUATING LARGE LANGUAGE MODELS FOR MEDICAL INFORMATION EXTRACTION: A COMPARATIVE STUDY OF ZERO-SHOT AND SCHEMA-BASED METHODS
Zakaria KADDARI, Ikram El HACHMI, Jamal BERRICH, Rim AMRANI, Toumi BOUCHENTOUF138-148
-
EXPLORING THE EXPEDIENCY OF BLOCKCHAIN-BASED SOLUTIONS: REVIEW AND CHALLENGES
Francisco Javier MORENO ARBOLEDA, Georgia GARANI, Sergio Andrés ARBOLEDA ZULUAGA149-174
-
FEASIBILITY OF USING LOW-PARAMETER LOCAL LLMS IN ANSWERING QUESTIONS FROM ENTERPRISE KNOWLEDGE BASE
Marcin BADUROWICZ, Stanisław SKULIMOWSKI, Maciej LASKOWSKI175-191
-
SHARPNESS IMPROVEMENT OF MAGNETIC RESONANCE IMAGES USING A GUIDED-SUBSUMED UNSHARP MASK FILTER
Manar AL-ABAJI, Zohair AL-AMEEN192-210
-
FUZZY REGION MERGING WITH HIERARCHICAL CLUSTERING TO FIND OPTIMAL INITIALIZATION OF FUZZY REGION IN IMAGE SEGMENTATION
Wawan GUNAWAN211-220
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
This study aims to map three main benthic habitats (coral, seagrass, and sand) in Kapota Atoll (Wakatobi, Indonesia) using single-beam echosounder (SBES) Simrad EK15. Eight acoustic parameters are used as classification aThis study aims to map three main benthic habitats (coral, seagrass, and sand) in Kapota Atoll (Wakatobi, Indonesia) using a single-beam echosounder (SBES) Simrad EK15. The acoustic data were processed using Sonar5-Pro software. Eight acoustic parameters were used as input for the classification and prediction of benthic habitats, including depth (D), five acoustic parameters of the first echo (BD, BP, AttSv1, DecSv1, and AttDecSv1), and cumulative energy of the second and third echoes (AttDecSv2 and AttDecSv3). The classification and prediction process of benthic habitats uses two machine learning algorithms, Random Forest (RF) and Support Vector Machine (SVM), in XLSTAT Basic+ software. The study results show that 49 combinations of acoustic parameters produce benthic habitat maps that meet the minimum accuracy standards for benthic habitat mapping (≥60%). Using eight acoustic parameters produces a more accurate benthic habitat map than using only two main SBES parameters (DecSv1 and AttDecSv2 parameters or E1 and E2 in the RoxAnn system indicating the roughness and hardness indices). The RF and SVM algorithms produce benthic habitat maps with the highest accuracy of 79.33% and 78.67%, respectively. Each acoustic parameter has a different importance for the classification of benthic habitats, where the order of importance of each acoustic parameter in the overall classification follows the following order: AttDecSv2 > D > DecSv1 > BD > AttDecSv3 > AttSv1 > AttDecSv1 > BP. Overall, using more acoustic parameters can significantly improve the accuracy of benthic habitat mapsinput, including depth (D), five acoustic parameters of the first echo (BD, BP, AttSv1, DecSv1, and AttDecSv1) and cumulative energy of the second and third echoes (AttDecSv2 and AttDecSv3). The classification and prediction process of benthic habitats uses two machine learning algorithms, namely Random Forest (RF) and Support Vector Machine (SVM). The study results show that using eight acoustic parameters produces a more accurate benthic habitat map than using only two main SBES parameters (as in the RoxAnn system: roughness and hardness indices). The RF and SVM algorithms produce benthic habitat maps with the highest accuracy of 79.33% and 78.67%, respectively. Each acoustic parameter has a different importance for the classification of benthic habitats, where five acoustic parameters have the highest importance for the overall classification, namely AttDecSv2, D, DecSv1, BD, and AttDecSv3.
Keywords:
References
Anderson, J. T., Van Holliday, D., Kloser, R., Reid, D. G., & Simard, Y. (2008). Acoustic seabed classification: current practice and future directions. ICES Journal of Marine Science, 65(6), 1004-1011. https://doi.org/10.1093/icesjms/fsn061 DOI: https://doi.org/10.1093/icesjms/fsn061
Balk, H., & Lindem, T. (2015). Sonar4 and Sonar5-Pro post processing systems: operator manual version 6.0.3. University of Oslo. https://www.scribd.com/document/477760502/SonarX-Manual-v603-2014-12-30-pdf
Bartholomä, A., Capperucci, R. M., Becker, L., Coers, S. I. I., & Battershill, C. N. (2020). Hydrodynamics and hydroacoustic mapping of a benthic seafloor in a coarse grain habitat of the German Bight. Geo-Marine Letters, 40(2), 183-195. https://doi.org/10.1007/s00367-019-00599-7 DOI: https://doi.org/10.1007/s00367-019-00599-7
Bejarano, S., Mumby, P. J., Hedley, J. D., & Sotheran, I. (2010). Combining optical and acoustic data to enhance the detection of Caribbean forereef habitats. Remote Sensing of Environment, 114(11), 2768-2778. https://doi.org/10.1016/j.rse.2010.06.012 DOI: https://doi.org/10.1016/j.rse.2010.06.012
Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011 DOI: https://doi.org/10.1016/j.isprsjprs.2016.01.011
Bravo, F., & Grant, J. (2020). Benthic habitat mapping and sediment nutrient fluxes in a shallow coastal environment in Nova Scotia, Canada. Estuarine, Coastal and Shelf Science, 242, 106816. https://doi.org/10.1016/j.ecss.2020.106816 DOI: https://doi.org/10.1016/j.ecss.2020.106816
Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123-140. https://doi.org/10.1007/BF00058655 DOI: https://doi.org/10.1007/BF00058655
Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324 DOI: https://doi.org/10.1023/A:1010933404324
Brown, C. J., Smith, S. J., Lawton, P., & Anderson, J. T. (2011). Benthic habitat mapping: A review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuarine, Coastal and Shelf Science, 92(3), 502-520. https://doi.org/10.1016/j.ecss.2011.02.007 DOI: https://doi.org/10.1016/j.ecss.2011.02.007
Congalton, R. G., & Green, K. (2019). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Third Edition (3rd ed.). CRC Press. DOI: https://doi.org/10.1201/9780429052729
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273-297. https://doi.org/10.1007/BF00994018 DOI: https://doi.org/10.1007/BF00994018
Diesing, M., Green, S. L., Stephens, D., Lark, R. M., Stewart, H. A., & Dove, D. (2014). Mapping seabed sediments: Comparison of manual, geostatistical, object-based image analysis and machine learning approaches. Continental Shelf Research, 84, 107-119. https://doi.org/10.1016/j.csr.2014.05.004 DOI: https://doi.org/10.1016/j.csr.2014.05.004
Fajaryanti, R., & Kang, M. (2019). A preliminary study on seabed classification using a scientific echosounder. Journal of the Korean Society of Fisheries Technology, 55, 39-49. https://doi.org/10.3796/KSFOT.2019.55.1.039 DOI: https://doi.org/10.3796/KSFOT.2019.55.1.039
Freitas, R., Ricardo, F., Pereira, F., Sampaio, L., Carvalho, S., Gaspar, M., Quintino, V., & Rodrigues, A. M. (2011). Benthic habitat mapping: Concerns using a combined approach (acoustic, sediment and biological data). Estuarine, Coastal and Shelf Science, 92(4), 598-606. https://doi.org/10.1016/j.ecss.2011.02.022 DOI: https://doi.org/10.1016/j.ecss.2011.02.022
Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random Forests for land cover classification. Pattern Recognition Letters, 27(4), 294-300. https:/doi.org/10.1016/j.patrec.2005.08.011 DOI: https://doi.org/10.1016/j.patrec.2005.08.011
Goff, J. A., Kraft, B. J., Mayer, L. A., Schock, S. G., Sommerfield, C. K., Olson, H. C., Gulick, S. P. S., & Nordfjord, S. (2004). Seabed characterization on the New Jersey middle and outer shelf: correlatability and spatial variability of seafloor sediment properties. Marine Geology, 209(1-4), 147-172. https://doi.org/10.1016/j.margeo.2004.05.030 DOI: https://doi.org/10.1016/j.margeo.2004.05.030
Green, E. P., Mumby, P. J., Edwards, A. J., & Clark, C. D. (2000). Remote sensing: handbook for tropical coastal management. UNESCO Pub.
Gumusay, M., Bakırman, T., Tüney Kızılkaya, I., & Aykut, N. (2018). A review of seagrass detection, mapping and monitoring applications using acoustic systems. European Journal of Remote Sensing, 52(1), 1-29. https://doi.org/10.1080/22797254.2018.1544838 DOI: https://doi.org/10.1080/22797254.2018.1544838
Hamilton, L. (2001). Acoustic Seabed Classification Systems. DSTO Aeronautical and Maritime Research Laboratory.
Hamouda, A., Soliman, K., El-Gharabawy, S., & Nassar, M. (2019). Comparative study between acoustic signals and images for detecting seabed features. Egyptian Journal of Aquatic Research, 45(2), 145-151. https:/doi.org/10.1016/j.ejar.2019.03.002 DOI: https://doi.org/10.1016/j.ejar.2019.03.002
Hamuna, B., Dimara, L., Pujiyati, S., & Natih, N. (2018). Correlation of substrate fraction percentage with acoustic backscattering strength from single beam echosounder detection. AACL Bioflux, 11, 1343-1351.
Hamuna, B., Pujiyati, S., Gaol, J., & Hestirianoto, T. (2023). Spatial distribution of benthic habitats in Kapota Atoll (Wakatobi National Park, Indonesia) using remote sensing imagery. Biodiversitas Journal of Biological Diversity, 24(7). https://doi.org/10.13057/biodiv/d240706 DOI: https://doi.org/10.13057/biodiv/d240706
Hasan, R. C., Ierodiaconou, D., & Monk, J. (2012). Evaluation of four supervised learning methods for benthic habitat mapping using backscatter from multi-beam sonar. Remote Sensing, 4(11), 3427-3443. https://www.mdpi.com/2072-4292/4/11/3427 DOI: https://doi.org/10.3390/rs4113427
Henriques, V., Guerra, M. T., Mendes, B., Gaudêncio, M. J., & Fonseca, P. (2015). Benthic habitat mapping in a Portuguese Marine Protected Area using EUNIS: An integrated approach. Journal of Sea Research, 100, 77-90. https://doi.org/10.1016/j.seares.2014.10.007 DOI: https://doi.org/10.1016/j.seares.2014.10.007
Hilgert, S., Kiemle, L., Fuchs, S., & Wagner, A. (2016). Investigation of echo sounding parameters for the characterisation of bottom sediments in a sub-tropical reservoir. Advances in Oceanography and Limnology, 7(1). https://doi.org/10.4081/aiol.2016.5623 DOI: https://doi.org/10.4081/aiol.2016.5623
Huang, Z., Siwabessy, P. J., Heqin, C., & Nichol, S. (2018). Using multibeam backscatter data to investigate sediment-acoustic relationships. Journal of Geophysical Research: Oceans, 123(7), 4649-4665. https://doi.org/10.1029/2017JC013638 DOI: https://doi.org/10.1029/2017JC013638
Lee, W. S., & Lin, C. Y. (2018). Mapping of tropical marine benthic habitat: Hydroacoustic classification of coral reefs environment using single-beam (RoxAnn™) system. Continental Shelf Research, 170, 1-10. https://doi.org/10.1016/j.csr.2018.09.012 DOI: https://doi.org/10.1016/j.csr.2018.09.012
Lumivero. (2023). XLSTAT statistical and data analysis solution. https://www.xlstat.com/en
Manik, H., Mamun, A., & Hestirianoto, T. (2014). Computation of single beam echo sounder signal for underwater objects detection and quantification. International Journal of Advanced Computer Science and Applications, 5(5). https://doi.org/10.14569/IJACSA.2014.050514 DOI: https://doi.org/10.14569/IJACSA.2014.050514
McIntyre, K., McLaren, K., & Prospere, K. (2018). Mapping shallow nearshore benthic features in a Caribbean marine-protected area: assessing the efficacy of using different data types (hydroacoustic versus satellite images) and classification techniques. International Journal of Remote Sensing, 39(4), 1117-1150. https://doi.org/10.1080/01431161.2017.1395924 DOI: https://doi.org/10.1080/01431161.2017.1395924
McLaren, K., McIntyre, K., & Prospere, K. (2019). Using the random forest algorithm to integrate hydroacoustic data with satellite images to improve the mapping of shallow nearshore benthic features in a marine protected area in Jamaica. GIScience & Remote Sensing, 56(7), 1065-1092. https://doi.org/10.1080/15481603.2019.1613803 DOI: https://doi.org/10.1080/15481603.2019.1613803
Misiuk, B., & Brown, C. J. (2024). Benthic habitat mapping: A review of three decades of mapping biological patterns on the seafloor. Estuarine, Coastal and Shelf Science, 296, 108599. https://doi.org/10.1016/j.ecss.2023.108599 DOI: https://doi.org/10.1016/j.ecss.2023.108599
Moszynski, M., & Hedgepeth, J. B. (2000). Using single-beam side-lobe observations of fish echoes for fish target strength and abundance estimation in shallow water. Aquatic Living Resources, 13(5), 379-383. https://doi.org/https://doi.org/10.1016/S0990-7440(00)01087-1 DOI: https://doi.org/10.1016/S0990-7440(00)01087-1
Nemani, S., Cote, D., Misiuk, B., Edinger, E., Mackin-McLaughlin, J., Templeton, A., Shaw, J., & Robert, K. (2022). A multi-scale feature selection approach for predicting benthic assemblages. Estuarine, Coastal and Shelf Science, 277, 108053. https:/doi.org/10.1016/j.ecss.2022.108053 DOI: https://doi.org/10.1016/j.ecss.2022.108053
Nguyen, T., Liquet, B., Mengersen, K., & Sous, D. (2021). Mapping of coral reefs with multispectral satellites: A review of recent papers. Remote Sensing, 13(21), 4470. https://doi.org/10.3390/rs13214470 DOI: https://doi.org/10.3390/rs13214470
Penrose, J., Siwabessy, P. J., Gavrilov, A., Parnum, I., Hamilton, L., Bickers, A., Brooke, B., Ryan, D., & Kennedy, P. (2006). Acoustic Techniques for Seabed Classification. CRC for Coastal Zone, Estuary & Waterway Management.
Pijanowski, B., & Brown, C. (2022). Grand challenges in acoustic remote sensing: Discoveries to support a better understanding of our changing planet. Frontiers in Remote Sensing, 2. https://doi.org/10.3389/frsen.2021.824848 DOI: https://doi.org/10.3389/frsen.2021.824848
Poulain, T., Argillier, C., Gevrey, M., & Guillard, J. (2011). Identifying lakebed nature: Is it feasible with a combination of echosounder and Sonar5-pro? Advances in Oceanography and Limnology, 2(1), 49-53. https://doi.org/10.1080/19475721.2011.565803 DOI: https://doi.org/10.1080/19475721.2011.565803
Pujiyati, S., Hamuna, B., Rohilah, Hisyam, M., Srimariana, E. S., & Natih, I. N. M. (2022). Distributions of environmental parameters and Plankton’s volume backscattering strength at Yos Sudarso Bay, Jayapura, Indonesia. Egyptian Journal of Aquatic Research, 48(1), 37-44. https://doi.org/https://doi.org/10.1016/j.ejar.2021.08.001 DOI: https://doi.org/10.1016/j.ejar.2021.08.001
Reshitnyk, L., Costa, M., Robinson, C., & Dearden, P. (2014). Evaluation of WorldView-2 and acoustic remote sensing for mapping benthic habitats in temperate coastal Pacific waters. Remote Sensing of Environment, 153, 7-23. https://doi.org/10.1016/j.rse.2014.07.016 DOI: https://doi.org/10.1016/j.rse.2014.07.016
Riegl, B. M., & Purkis, S. J. (2005). Detection of shallow subtidal corals from IKONOS satellite and QTC View (50, 200 kHz) single-beam sonar data (Arabian Gulf; Dubai, UAE). Remote Sensing of Environment, 95(1), 96-114. https://doi.org/10.1016/j.rse.2004.11.016 DOI: https://doi.org/10.1016/j.rse.2004.11.016
Sánchez-Carnero, N., Rodríguez-Pérez, D., Llorens, S., Orenes-Salazar, V., Ortolano, A., & García-Charton, J. A. (2023). An expeditious low-cost method for the acoustic characterization of seabeds in a Mediterranean coastal protected area. Estuarine, Coastal and Shelf Science, 281, 108204. https://doi.org/10.1016/j.ecss.2022.108204 DOI: https://doi.org/10.1016/j.ecss.2022.108204
Shao, H., Kiyomoto, S., Kawauchi, Y., Kadota, T., Nakagawa, M., Yoshimura, T., Yamada, H., Acker, T., & Moore, B. (2021). Classification of various algae canopy, algae turf, and barren seafloor types using a scientific echosounder and machine learning analysis. Estuarine, Coastal and Shelf Science, 255, 107362. https://doi.org/10.1016/j.ecss.2021.107362 DOI: https://doi.org/10.1016/j.ecss.2021.107362
Sklar, E., Bushuev, E., Misiuk, B., Morissette, G., & Brown, C. (2024). Seafloor morphology and substrate mapping in the Gulf of St Lawrence, Canada, using machine learning approaches. Frontiers in Marine Science, 11. https://doi.org/10.3389/fmars.2024.1306396 DOI: https://doi.org/10.3389/fmars.2024.1306396
Solikin, S., Manik, H., Pujiyati, S., & Susilohadi, S. (2018). Measurement of bottom backscattering strength using single-beam echosounder. Journal of Physics: Conference Series, 1075, 012036. https://doi.org/10.1088/1742-6596/1075/1/012036 DOI: https://doi.org/10.1088/1742-6596/1075/1/012036
Stephens, D., & Diesing, M. (2014). A comparison of supervised classification methods for the prediction of substrate type using multibeam acoustic and legacy grain-size data. PLOS ONE, 9(4), e93950. https://doi.org/10.1371/journal.pone.0093950 DOI: https://doi.org/10.1371/journal.pone.0093950
Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10(5), 988-999. https://doi.org/10.1109/72.788640 DOI: https://doi.org/10.1109/72.788640
Vassallo, P., Bianchi, C. N., Paoli, C., Holon, F., Navone, A., Bavestrello, G., Cattaneo Vietti, R., & Morri, C. (2018). A predictive approach to benthic marine habitat mapping: Efficacy and management implications. Marine Pollution Bulletin, 131(Part A), 218-232. https://doi.org/10.1016/j.marpolbul.2018.04.016 DOI: https://doi.org/10.1016/j.marpolbul.2018.04.016
Wadoux, A. M. J. C., Heuvelink, G. B. M., de Bruin, S., & Brus, D. J. (2021). Spatial cross-validation is not the right way to evaluate map accuracy. Ecological Modelling, 457, 109692. https://doi.org/10.1016/j.ecolmodel.2021.109692 DOI: https://doi.org/10.1016/j.ecolmodel.2021.109692
Wölfl, A.-C., Snaith, H., Amirebrahimi, S., Devey, C. W., Dorschel, B., Ferrini, V., Huvenne, V. A. I., Jakobsson, M., Jencks, J., Johnston, G., Lamarche, G., Mayer, L., Millar, D., Pedersen, T. H., Picard, K., Reitz, A., Schmitt, T., Visbeck, M., Weatherall, P., & Wigley, R. (2019). Seafloor mapping – The challenge of a truly global ocean bathymetry. Frontiers in Marine Science, 6. https://doi.org/10.3389/fmars.2019.00283 DOI: https://doi.org/10.3389/fmars.2019.00283
Article Details
Abstract views: 483
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
