COMPARISON OF SELECTED CLASSIFICATION METHODS BASED ON MACHINE LEARNING AS A DIAGNOSTIC TOOL FOR KNEE JOINT CARTILAGE DAMAGE BASED ON GENERATED VIBROACOUSTIC PROCESSES

Robert KARPIŃSKI

r.karpinski@pollub.pl
Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, (Poland)
https://orcid.org/0000-0003-4063-8503

Przemysław KRAKOWSKI


Medical University of Lublin, Chair and Department of Traumatology and Emergency Medicine, Staszica 11, 20-081 Lublin, Poland, przemyslawkrakowski@umlub.pl, Orthopaedic and Sports Traumatology Department, Carolina Medical Center, Pory 78, 02-757, Warsaw, Poland (Poland)

Józef JONAK


Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin, Poland, (Poland)

Anna MACHROWSKA


Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin, Poland, (Poland)

Marcin MACIEJEWSKI


Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, Institute of Electronics and Information Technology, Nadbystrzycka 36, 20-618 Lublin, Poland, (Poland)

Abstract

Osteoarthritis is one of the most common cause of disability among elderly. It can affect every joint in human body, however, it is most prevalent in hip, knee, and hand joints. Early diagnosis of cartilage lesions is essential for fast and accurate treatment, which can prolong joint function. Available diagnostic methods include conventional X-ray, ultrasound and magnetic resonance imaging. However, those diagnostic modalities are not suitable for screening purposes. Vibroarthrography is proposed in literature as a screening method for cartilage lesions. However, exact method of signal acquisition as well as classification method is still not well established in literature. In this study, 84 patients were assessed, of whom 40 were in the control group and 44 in the study group. Cartilage status in the study group was evaluated during surgical treatment. Multilayer perceptron - MLP, radial basis function - RBF, support vector method - SVM and naive classifier – NBC were introduced in this study as classification protocols. Highest accuracy (0.893) was found when MLP was introduced, also RBF classification showed high sensitivity (0.822) and specificity (0.821). On the other hand, NBC showed lowest diagnostic accuracy reaching 0.702. In conclusion vibroarthrography presents a promising diagnostic modality for cartilage evaluation in clinical setting with the use of MLP and RBF classification methods.


Keywords:

articular cartilage, Artificial Intelligence, RBF, MLP, SVM, knee joint

Andersen, R. E., Arendt-Nielsen, L., & Madeleine, P. (2016). A review of engineering aspects of vibroarthography of the knee joint. Critical Reviews in Physical and Rehabilitation Medicine, 28(1–2), 13–32. https://doi.org/10.1615/CritRevPhysRehabilMed.2016017185
DOI: https://doi.org/10.1615/CritRevPhysRehabilMed.2016017185   Google Scholar

Ashoorion, V., Sadeghirad, B., Wang, L., Noori, A., Abdar, M., Kim, Y., Chang, Y., Rehman, N., Lopes, L. C., Couban, R. J., Aminilari, M., Malektojari, A., Ghazizadeh, S., Rehman, Y., Ghasemi, M., Adili, A., Guyatt, G. H., & Busse, J. W. (2023). Predictors of persistent post-surgical pain following total knee arthroplasty: A systematic review and meta-analysis of observational studies. Pain Medicine, 24(4), 369–381. https://doi.org/10.1093/pm/pnac154
DOI: https://doi.org/10.1093/pm/pnac154   Google Scholar

Aziz, N., Akhir, E. A. P., Aziz, I. A., Jaafar, J., Hasan, M. H., & Abas, A. N. C. (2020). A study on gradient boosting algorithms for development of AI monitoring and prediction systems. 2020 International Conference on Computational Intelligence (ICCI) (pp. 11–16). IEEE. https://doi.org/10.1109/ICCI51257.2020.9247843
DOI: https://doi.org/10.1109/ICCI51257.2020.9247843   Google Scholar

Barnett, A. J., & Toms, A. D. (2012). Revision total hip and knee replacement. Clinics in Geriatric Medicine, 28(3), 431-446. https://doi.org/10.1016/j.cger.2012.05.008
DOI: https://doi.org/10.1016/j.cger.2012.05.008   Google Scholar

Bennasar, M., Setchi, R., Hicks, Y., & Bayer, A. (2014). Cascade classification for diagnosing dementia. 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 2535–2540). IEEE. https://doi.org/10.1109/SMC.2014.6974308
DOI: https://doi.org/10.1109/SMC.2014.6974308   Google Scholar

Bose, B. K. (2007). Neural network applications in power electronics and motor drives - An introduction and perspective. IEEE Transactions on Industrial Electronics, 54(1), 14–33. https://doi.org/10.1109/TIE.2006.888683
DOI: https://doi.org/10.1109/TIE.2006.888683   Google Scholar

Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21, 6. https://doi.org/10.1186/s12864-019-6413-7
DOI: https://doi.org/10.1186/s12864-019-6413-7   Google Scholar

Chih-Wei, H., & Chih-Jen, L. (2002). A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 13(2), 415–425. https://doi.org/10.1109/72.991427
DOI: https://doi.org/10.1109/72.991427   Google Scholar

Emadi Andani, M., & Salehi, Z. (2024). An affordable and easy-to-use tool to diagnose knee arthritis using knee sound. Biomedical Signal Processing and Control, 88, 105685. https://doi.org/10.1016/j.bspc.2023.105685
DOI: https://doi.org/10.1016/j.bspc.2023.105685   Google Scholar

Figueroa, D., Calvo, R., Vaisman, A., Carrasco, M. A., Moraga, C., & Delgado, I. (2007). Knee chondral lesions: incidence and correlation between arthroscopic and magnetic resonance findings. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 23(3), 312-315. https://doi.org/10.1016/j.arthro.2006.11.015
DOI: https://doi.org/10.1016/j.arthro.2006.11.015   Google Scholar

Ghahramani, Z., & Kim, H. C. (2003). Bayesian classifier combination. Gatsby Computational Neuroscience Unit University College London.
  Google Scholar

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
  Google Scholar

Huang, Y., & Li, L. (2011). Naive Bayes classification algorithm based on small sample set. 2011 IEEE International Conference on Cloud Computing and Intelligence Systems (pp. 34–39). IEEE. https://doi.org/10.1109/CCIS.2011.6045027
DOI: https://doi.org/10.1109/CCIS.2011.6045027   Google Scholar

Jonak, J., Karpinski, R., Machrowska, A., Krakowski, P., & Maciejewski, M. (2019). A preliminary study on the use of EEMD-RQA algorithms in the detection of degenerative changes in knee joints. IOP Conference Series: Materials Science and Engineering, 710, 012037. https://doi.org/10.1088/1757-899X/710/1/012037
DOI: https://doi.org/10.1088/1757-899X/710/1/012037   Google Scholar

Karpiński, R. (2022). Knee joint osteoarthritis diagnosis based on selected acoustic signal discriminants using machine learning. Applied Computer Science, 18(2), 71–85. https://doi.org/10.35784/acs-2022-14
DOI: https://doi.org/10.35784/acs-2022-14   Google Scholar

Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2021a). Analysis of differences in vibroacoustic signals between healthy and osteoarthritic knees using EMD algorithm and statistical analysis. Journal of Physics: Conference Series, 2130, 012010. https://doi.org/10.1088/1742-6596/2130/1/012010
DOI: https://doi.org/10.1088/1742-6596/2130/1/012010   Google Scholar

Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2021b). Estimation of differences in selected indices of vibroacoustic signals between healthy and osteoarthritic patellofemoral joints as a potential non-invasive diagnostic tool. Journal of Physics: Conference Series, 2130, 012009. https://doi.org/10.1088/1742-6596/2130/1/012009
DOI: https://doi.org/10.1088/1742-6596/2130/1/012009   Google Scholar

Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2022a). Diagnostics of articular cartilage damage based on generated acoustic signals using ANN - Part I: Femoral-tibial joint. Sensors, 22(6), 2176. https://doi.org/10.3390/s22062176
DOI: https://doi.org/10.3390/s22062176   Google Scholar

Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2022b). Diagnostics of articular cartilage damage based on generated acoustic signals using ANN - Part II: Patellofemoral joint. Sensors, 22(10), 3765. https://doi.org/10.3390/s22103765
DOI: https://doi.org/10.3390/s22103765   Google Scholar

Karpiński, R., Machrowska, A., & Maciejewski, M. (2019). Application of acoustic signal processing methods in detecting differences between open and closed kinematic chain movement for the knee joint. Applied Computer Science, 15(1), 36–48. https://doi.org/10.23743/acs-2019-03
DOI: https://doi.org/10.35784/acs-2019-03   Google Scholar

Kotsiantis, S. B. (2013). Decision trees: A recent overview. Artificial Intelligence Review, 39, 261–283. https://doi.org/10.1007/s10462-011-9272-4
DOI: https://doi.org/10.1007/s10462-011-9272-4   Google Scholar

Krakowski, P., Karpiński, R., Jojczuk, M., Nogalska, A., & Jonak, J. (2021a). Knee MRI underestimates the Grade of cartilage lesions. Applied Sciences, 11(4), 1552. https://doi.org/10.3390/app11041552
DOI: https://doi.org/10.3390/app11041552   Google Scholar

Krakowski, P., Karpiński, R., Jonak, J., & Maciejewski, R. (2021b). Evaluation of diagnostic accuracy of physical examination and MRI for ligament and meniscus injuries. Journal of Physics: Conference Series, 1736, 012027. https://doi.org/10.1088/1742-6596/1736/1/012027
DOI: https://doi.org/10.1088/1742-6596/1736/1/012027   Google Scholar

Krakowski, P., Karpiński, R., Maciejewski, R., & Jonak, J. (2021c). Evaluation of the diagnostic accuracy of MRI in detection of knee cartilage lesions using Receiver Operating Characteristic curves. Journal of Physics: Conference Series, 1736, 012028. https://doi.org/10.1088/1742-6596/1736/1/012028
DOI: https://doi.org/10.1088/1742-6596/1736/1/012028   Google Scholar

Lemon, S. C., Roy, J., Clark, M. A., Friedmann, P. D., & Rakowski, W. (2003). Classification and regression tree analysis in public health: Methodological review and comparison with logistic regression. Annals of Behavioral Medicine, 26(3), 172–181. https://doi.org/10.1207/S15324796ABM2603_02
DOI: https://doi.org/10.1207/S15324796ABM2603_02   Google Scholar

Liu, R., Yang, B., Zio, E., & Chen, X. (2018). Artificial intelligence for fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing, 108, 33–47. https://doi.org/10.1016/j.ymssp.2018.02.016
DOI: https://doi.org/10.1016/j.ymssp.2018.02.016   Google Scholar

Luque, A., Carrasco, A., Martín, A., & De Las Heras, A. (2019). The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognition, 91, 216–231. https://doi.org/10.1016/j.patcog.2019.02.023
DOI: https://doi.org/10.1016/j.patcog.2019.02.023   Google Scholar

Łysiak, A., Froń, A., Bączkowicz, D., & Szmajda, M. (2020). Vibroarthrographic signal spectral features in 5-class knee joint classification. Sensors, 20(17), 5015. https://doi.org/10.3390/s20175015
DOI: https://doi.org/10.3390/s20175015   Google Scholar

Machrowska, A., Karpiński, R., Jonak, J., Szabelski, J., & Krakowski, P. (2020a). Numerical prediction of the component-ratio-dependent compressive strength of bone cement. Applied Computer Science, 16(3), 88-101. https://doi.org/10.23743/acs-2020-24
DOI: https://doi.org/10.35784/acs-2020-24   Google Scholar

Machrowska, A., Karpiński, R., Krakowski, P., & Jonak, J. (2019). Diagnostic factors for opened and closed kinematic chain of vibroarthrography signals. Applied Computer Science, 15(3), 34-44. https://doi.org/10.23743/acs-2019-19
DOI: https://doi.org/10.35784/acs-2019-19   Google Scholar

Machrowska, A., Szabelski, J., Karpiński, R., Krakowski, P., Jonak, J., & Jonak, K. (2020b). Use of Deep Learning Networks and statistical modeling to predict changes in mechanical parameters of contaminated bone cements. Materials, 13(23), 5419. https://doi.org/10.3390/ma13235419
DOI: https://doi.org/10.3390/ma13235419   Google Scholar

Meng Joo Er, Shiqian Wu, Juwei Lu, & Hock Lye Toh. (2002). Face recognition with radial basis function (RBF) neural networks. IEEE Transactions on Neural Networks, 13(3), 697–710. https://doi.org/10.1109/TNN.2002.1000134
DOI: https://doi.org/10.1109/TNN.2002.1000134   Google Scholar

Nalband, S., Prince, A., & Agrawal, A. (2018). Entropy‐based feature extraction and classification of vibroarthographic signal using complete ensemble empirical mode decomposition with adaptive noise. IET Science, Measurement & Technology, 12(3), 350–359. https://doi.org/10.1049/iet-smt.2017.0284
DOI: https://doi.org/10.1049/iet-smt.2017.0284   Google Scholar

Nevalainen, M. T., Veikkola, O., Thevenot, J., Tiulpin, A., Hirvasniemi, J., Niinimäki, J., & Saarakkala, S. S. (2021). Acoustic emissions and kinematic instability of the osteoarthritic knee joint: Comparison with radiographic findings. Scientific Reports, 11, 19558. https://doi.org/10.1038/s41598-021-98945-2
DOI: https://doi.org/10.1038/s41598-021-98945-2   Google Scholar

Prior, J., Mascaro, B., Shark, L. K., Stockdale, J., Selfe, J., Bury, R., Cole, P., & Goodacre, J. A. (2010). Analysis of high frequency acoustic emission signals as a new approach for assessing knee osteoarthritis. Annals of the Rheumatic Diseases, 69, 929–930. https://doi.org/10.1136/ard.2009.112599
DOI: https://doi.org/10.1136/ard.2009.112599   Google Scholar

Rangayyan, R. M., Oloumi, F., Wu, Y., & Cai, S. (2013). Fractal analysis of knee-joint vibroarthrographic signals via power spectral analysis. Biomedical Signal Processing and Control, 8(1), 23-29. https://doi.org/10.1016/j.bspc.2012.05.004
DOI: https://doi.org/10.1016/j.bspc.2012.05.004   Google Scholar

Riecke, B. F., Christensen, R., Torp-Pedersen, S., Boesen, M., Gudbergsen, H., & Bliddal, H. (2014). An ultrasound score for knee osteoarthritis: A cross-sectional validation study. Osteoarthritis and Cartilage, 22(10), 1675–1691. https://doi.org/10.1016/j.joca.2014.06.020
DOI: https://doi.org/10.1016/j.joca.2014.06.020   Google Scholar

Rogala, M., Gajewski, J., & Ferdynus, M. (2019). Numerical analysis of the thin-walled structure with different trigger locations under axial load. IOP Conference Series: Materials Science and Engineering, 710, 012028. https://doi.org/10.1088/1757-899X/710/1/012028
DOI: https://doi.org/10.1088/1757-899X/710/1/012028   Google Scholar

Rogala, M., Gajewski, J., & Górecki, M. (2021). Study on the effect of geometrical parameters of a hexagonal trigger on energy absorber performance using ANN. Materials, 14(20), 5981. https://doi.org/10.3390/ma14205981
DOI: https://doi.org/10.3390/ma14205981   Google Scholar

Schlüter, D. K., Spain, L., Quan, W., Southworth, H., Platt, N., Mercer, J., Shark, L. K., Waterton, J. C., Bowes, M., Diggle, P. J., Dixon, M., Huddleston, J., & Goodacre, J. (2019). Use of acoustic emission to identify novel candidate biomarkers for knee osteoarthritis (OA). PLOS ONE, 14(10), e0223711. https://doi.org/10.1371/journal.pone.0223711
DOI: https://doi.org/10.1371/journal.pone.0223711   Google Scholar

Shaik, A. B., & Srinivasan, S. (2019). A brief survey on random forest ensembles in classification model. In S. Bhattacharyya, A. E. Hassanien, D. Gupta, A. Khanna & I. Pan (Eds.), International Conference on Innovative Computing and Communications (Vol. 56, pp. 253–260). Springer Singapore. https://doi.org/10.1007/978-981-13-2354-6_27
DOI: https://doi.org/10.1007/978-981-13-2354-6_27   Google Scholar

Shidore, M. M., Athreya, S. S., Deshpande, S., & Jalnekar, R. (2021). Screening of knee-joint vibroarthrographic signals using time and spectral domain features. Biomedical Signal Processing and Control, 68, 102808. https://doi.org/10.1016/j.bspc.2021.102808
DOI: https://doi.org/10.1016/j.bspc.2021.102808   Google Scholar

Singh, J. A., Yu, S., Chen, L., & Cleveland, J. D. (2019). Rates of total joint replacement in the United States: future projections to 2020–2040 using the National Inpatient Sample. The Journal of Rheumatology, 46(9), 1134–1140. https://doi.org/10.3899/jrheum.170990
DOI: https://doi.org/10.3899/jrheum.170990   Google Scholar

Solivetti, F. M., Guerrisi, A., Salducca, N., Desiderio, F., Graceffa, D., Capodieci, G., Romeo, P., Sperduti, I., & Canitano, S. (2016). Appropriateness of knee MRI prescriptions: Clinical, economic and technical issues. La Radiologia Medica, 121, 315-322. https://doi.org/10.1007/s11547-015-0606-1
DOI: https://doi.org/10.1007/s11547-015-0606-1   Google Scholar

Szabelski, J., Karpiński, R., & Machrowska, A. (2022). Application of an Artificial Neural Network in the modelling of heat curing effects on the strength of adhesive joints at elevated temperature with imprecise adhesive mix ratios. Materials, 15(3), 721. https://doi.org/10.3390/ma15030721
DOI: https://doi.org/10.3390/ma15030721   Google Scholar

W-Dahl, A., Kärrholm, J., Rogmark, C., Mohaddes, M., Carling, M., Sundberg, M., Bülow, E., Nåtman, J., Carlsen, H., Isaksson, R., & Rolfson, O. (2022). Annual Report 2022. Swedish Arthroplasty Register. https://registercentrum.blob.core.windows.net/refdocs/10.18158/BklrLg8NOo.pdf
  Google Scholar

Williams, J., & Pierre-Louis, K. (2024). Osteoarthritis of the Knee. Physician Assistant Clinics, 9(1), 59–69. https://doi.org/10.1016/j.cpha.2023.08.003
DOI: https://doi.org/10.1016/j.cpha.2023.08.003   Google Scholar

Wu, Y., Cai, S., Yang, S., Zheng, F., & Xiang, N. (2013). Classification of knee joint vibration signals using bivariate feature distribution estimation and maximal posterior probability fecision criterion. Entropy, 15(4), 1375-1387. https://doi.org/10.3390/e15041375
DOI: https://doi.org/10.3390/e15041375   Google Scholar

Wu, Z., & Huang, N. E. (2009). Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances in Adaptive Data Analysis, 01(01), 1–41. https://doi.org/10.1142/S1793536909000047
DOI: https://doi.org/10.1142/S1793536909000047   Google Scholar

Yang, S., Cai, S., Zheng, F., Wu, Y., Liu, K., Wu, M., Zou, Q., & Chen, J. (2014). Representation of fluctuation features in pathological knee joint vibroarthrographic signals using kernel density modeling method. Medical Engineering & Physics, 36(10), 1305–1311. https://doi.org/10.1016/j.medengphy.2014.07.008
DOI: https://doi.org/10.1016/j.medengphy.2014.07.008   Google Scholar

Zhang, S., Li, X., Zong, M., Zhu, X., & Cheng, D. (2017). Learning k for kNN classification. ACM Transactions on Intelligent Systems and Technology, 8(3), 1–19. https://doi.org/10.1145/2990508
DOI: https://doi.org/10.1145/2990508   Google Scholar

Zhang, Y. (2012). Support vector machine classification algorithm and its application. In C. Liu, L. Wang, & A. Yang (Eds.), Information Computing and Applications (Vol. 308, pp. 179–186). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-34041-3_27
DOI: https://doi.org/10.1007/978-3-642-34041-3_27   Google Scholar

Download


Published
2023-12-31

Cited by

KARPIŃSKI, R., KRAKOWSKI, P., JONAK, J., MACHROWSKA, A., & MACIEJEWSKI, M. (2023). COMPARISON OF SELECTED CLASSIFICATION METHODS BASED ON MACHINE LEARNING AS A DIAGNOSTIC TOOL FOR KNEE JOINT CARTILAGE DAMAGE BASED ON GENERATED VIBROACOUSTIC PROCESSES. Applied Computer Science, 19(4), 136–150. https://doi.org/10.35784/acs-2023-40

Authors

Robert KARPIŃSKI 
r.karpinski@pollub.pl
Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
https://orcid.org/0000-0003-4063-8503

Authors

Przemysław KRAKOWSKI 

Medical University of Lublin, Chair and Department of Traumatology and Emergency Medicine, Staszica 11, 20-081 Lublin, Poland, przemyslawkrakowski@umlub.pl, Orthopaedic and Sports Traumatology Department, Carolina Medical Center, Pory 78, 02-757, Warsaw, Poland Poland

Authors

Józef JONAK 

Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin, Poland, Poland

Authors

Anna MACHROWSKA 

Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin, Poland, Poland

Authors

Marcin MACIEJEWSKI 

Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, Institute of Electronics and Information Technology, Nadbystrzycka 36, 20-618 Lublin, Poland, Poland

Statistics

Abstract views: 363
PDF downloads: 166


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.