PUPIL DIAMETER AND MACHINE LEARNING FOR DEPRESSION DETECTION: A COMPARATIVE STUDY WITH DEEP LEARNING MODELS
Islam MOHAMED
Higher Technological Institute, Biomedical Engineering Department (Egypt)
https://orcid.org/0009-0001-4408-7190
Mohamed EL-WAKAD
Future University, Faculty of Engineering and Technology, Biomedical Engineering Department (Egypt)
https://orcid.org/0000-0003-2637-1048
Khaled ABBAS
Higher Technological Institute, Electronics and Communication Department (Egypt)
https://orcid.org/0009-0002-0913-4163
Mohamed ABOAMER
Majmaah University, College of Applied Medical Sciences, Medical Equipment Technology Department (Saudi Arabia)
https://orcid.org/0000-0002-4433-776X
Nader A. Rahman MOHAMED
nader_mohamed@hotmail.comMisr University for Science and Technology (MUST) - Faculty of Engineering - Biomedical Engineering Department. (Egypt)
https://orcid.org/0000-0001-7680-306X
Abstract
According to the World Health Organization, the Global Mental Health Report estimated that between 251 and 310 million individuals worldwide experienced depression during the first year of the COVID-19 pandemic. Most methods for detecting depression rely on clinical diagnoses and surveys. However, the American Psychiatric Association reports that over 50% of patients do not receive appropriate treatment. This study aims to utilize machine learning and pupil diameter features to identify depression and evaluate the accuracy of these classifiers in comparison to our previous deep learning model. While limited research has explored the use of pupillary diameter as a classification tool for distinguishing between individuals with and without depression, several studies have focused on EEG signals for this purpose. The study involved 58 participants, with 29 classified as depressed and 29 as healthy. The classification was based on statistical features extracted from the Hilbert-Huang Transform. Results showed a significant improvement in average accuracy compared to the authors’ prior work, with the current study achieving 77.72% accuracy, compared to 64.78% in their previous research. Machine learning methods, particularly Bagging, outperformed deep learning models such as AlexNet when classifying data from the left and right eyes individually (90.91% vs. 78.57% for the left eye; 90.91% vs. 71.43% for the right eye). However, when combining data from both eyes, deep learning using AlexNet demonstrated superior performance (98.28% accuracy compared to 93.75% using Bagging with statistical features from both eyes). Despite the higher accuracy of deep learning, machine learning is recommended for its faster execution times.
Keywords:
Pupil Diameter (PD), Major Depressive Disorder (MDD), Machine Learning (ML), Hilbert–Huang Transform (HHT), Cross-validation (CV)References
Aboamer, M. A., Azar, A. T., Mohamed, A. S. A., Bär, K.-J., Berger, S., & Wahba, K. (2014). Nonlinear features of heart rate variability in paranoid schizophrenic. Neural Computing and Applications, 25(7), 1535-1555. https://doi.org/10.1007/s00521-014-1621-1
Google Scholar
Anas, E. M. A., Lee, S. Y., & Hasan, M. K. (2010). Sequential algorithm for life threatening cardiac pathologies detection based on mean signal strength and EMD functions. BioMedical Engineering OnLine, 9, 43. https://doi.org/10.1186/1475-925X-9-43
Google Scholar
Benvenuto, J., Jin, Y., Casale, M., Lynch, G., & Granger, R. (2002). Identification of diagnostic evoked response potential segments in Alzheimer’s disease. Experimental Neurology, 176(2), 269-276. https://doi.org/10.1006/exnr.2002.7930
Google Scholar
Ding, X., Yue, X., Zheng, R., Bi, C., Li, D., & Yao, G. (2019). Classifying major depression patients and healthy controls using EEG, eye tracking and galvanic skin response data. Journal of Affective Disorders, 251, 156-161. https://doi.org/10.1016/j.jad.2019.03.058
Google Scholar
Drysdale, A. T., Grosenick, L., Downar, J., Dunlop, K., Mansouri, F., Meng, Y., Fetcho, R. N., Zebley, B., Oathes, D. J., Etkin, A., Schatzberg, A. F., Sudheimer, K., Keller, J., Mayberg, H. S., Gunning, F. M., Alexopoulos, G. S., Fox, M. D., Pascual-Leone, A., Voss, H. U., … Liston, C. (2017). Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nature Medicine, 23, 28-38. https://doi.org/10.1038/nm.4246
Google Scholar
Gregory, J. A. (1985). Shape Preserving Spline Interpolation. NASA. Langley Research Center Computational Geometry and Computer-Aided Design.
Google Scholar
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585, 357-362. https://doi.org/10.1038/s41586-020-2649-2
Google Scholar
Huang, N. E., & Attoh-Okine, N. O. (Eds.). (2005). The Hilbert-Huang Transform in Engineering. CRC Press. https://doi.org/10.1201/9781420027532
Google Scholar
Huang, N. E., & Shen, S. S. P. (2005). Hilbert-huang Transform And Its Applications. World Scientific. https://doi.org/10.1142/5862
Google Scholar
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903-995. https://doi.org/10.1098/rspa.1998.0193
Google Scholar
Ismail, I., El-Wakad, M. T., Shafie, K. A., Aboamer, M. A., & Mohamed, N. A. R. (2024). Major depressive disorder: Early detection using deep learning and pupil diameter. Indonesian Journal of Electrical Engineering and Computer Science, 35(2), 916-932. https://doi.org/10.11591/ijeecs.v35.i2.pp916-932
Google Scholar
Jones, N. P., Siegle, G. J., & Mandell, D. (2015). Motivational and emotional influences on cognitive control in depression: A pupillometry study. Cognitive, Affective, & Behavioral Neuroscience, 15, 263-275. https://doi.org/10.3758/s13415-014-0323-6
Google Scholar
Junsheng, C., Dejie, Y., & Yu, Y. (2006). Research on the intrinsic mode function (IMF) criterion in EMD method. Mechanical Systems and Signal Processing, 20(4), 817-824. https://doi.org/10.1016/j.ymssp.2005.09.011
Google Scholar
Kamel, M. S., & Selim, S. Z. (1994). A relaxation approach to the fuzzy clustering problem. Fuzzy Sets and Systems, 61(2), 177-188. https://doi.org/10.1016/0165-0114(94)90232-1
Google Scholar
Kowalski, P., & Smyk, R. (2018). Review and comparison of smoothing algorithms for one-dimensional data noise reduction. 2018 International Interdisciplinary PhD Workshop (IIPhDW) (pp. 277-281). IEEE. https://doi.org/10.1109/IIPHDW.2018.8388373
Google Scholar
Kramarić, K., Šapina, M., Garcin, M., Milas, K., Pirić, M., Brdarić, D., Lukić, G., Milas, V., & Pušeljić, S. (2019). Heart rate asymmetry as a new marker for neonatal stress. Biomedical Signal Processing and Control, 47, 219-223. https://doi.org/10.1016/j.bspc.2018.08.027
Google Scholar
Lendasse, A., Wertz, V., & Verleysen, M. (2003). Model selection with cross-validations and bootstraps-application to time series prediction with RBFN models. In O. Kaynak, E. Alpaydin, E. Oja, & L. Xu (Eds.), Artificial Neural Networks and Neural Information Processing - ICANN/ICONIP 2003 (pp. 573-580). Springer. https://doi.org/10.1007/3-540-44989-2_68
Google Scholar
Li, M., Cao, L., Zhai, Q., Li, P., Liu, S., Li, R., Feng, L., Wang, G., Hu, B., & Lu, S. (2020). Method of depression classification based on behavioral and physiological signals of eye movement. Wiley Online Library, 2020(1), 4174857. https://doi.org/10.1155/2020/4174857
Google Scholar
Li, W., Ma, H., Wang, X., & Shi, D. (2014). Features Derived from Behavioral Experiments to Distinguish Mental Healthy People from Depressed People. Biomedical Engineering / 817: Robotics Applications. https://doi.org/10.2316/P.2014.818-021
Google Scholar
Mao, J., & Jain, A. K. (1996). A self-organizing network for hyperellipsoidal clustering (HEC). IEEE Transactions on Neural Networks, 7(1), 16-29. https://doi.org/10.1109/72.478389
Google Scholar
Newson, J. J., & Thiagarajan, T. C. (2019). EEG frequency bands in psychiatric disorders: A review of resting state studies. Frontiers in Human Neuroscience, 12. https://doi.org/10.3389/fnhum.2018.00521
Google Scholar
Schultebraucks, K., Yadav, V., Shalev, A. Y., Bonanno, G. A., & Galatzer-Levy, I. R. (2022). Deep Learning-based classification of posttraumatic stress disorder and depression following trauma utilizing visual and auditory markers of arousal and mood. Psychological Medicine, 52(5), 957-967. https://doi.org/10.1017/S0033291720002718
Google Scholar
Schumann, A., Kralisch, C., & Bär, K.-J. (2015). Spectral decomposition of pupillary unrest using wavelet entropy. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 6154-6157). IEEE. https://doi.org/10.1109/EMBC.2015.7319797
Google Scholar
Selim, S. Z., & Alsultan, K. (1991). A simulated annealing algorithm for the clustering problem. Pattern Recognition, 24(10), 1003-1008. https://doi.org/10.1016/0031-3203(91)90097-O
Google Scholar
Shen, R., Zhan, Q., Wang, Y., & Ma, H. (2021). Depression detection by analysing eye movements on emotional images. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 7973-7977). IEEE. https://doi.org/10.1109/ICASSP39728.2021.9414663
Google Scholar
Shen, S. S. P., Shu, T., Huang, N. E., Wu, Z., North, G. R., Karl, T. R., & Easterling, D. R. (2005). Hht analysis of the nonlinear and non-stationary annual cycle of daily surface air temperature data. Hilbert-Huang Transform and Its Applications, 5, 187-209. https://doi.org/10.1142/9789812703347_0009
Google Scholar
Siegle, G. J., Granholm, E., Ingram, R. E., & Matt, G. E. (2001). Pupillary and reaction time measures of sustained processing of negative information in depression. Biological Psychiatry, 49(7), 624-636. https://doi.org/10.1016/S0006-3223(00)01024-6
Google Scholar
Siegle, G. J., Steinhauer, S. R., Friedman, E. S., Thompson, W. S., & Thase, M. E. (2011). Remission prognosis for cognitive therapy for recurrent depression using the pupil: Utility and neural correlates. Biological Psychiatry, 69(8), 726-733. https://doi.org/10.1016/j.biopsych.2010.12.041
Google Scholar
Siegle, G. J., Steinhauer, S. R., Stenger, V. A., Konecky, R., & Carter, C. S. (2003). Use of concurrent pupil dilation assessment to inform interpretation and analysis of fMRI data. NeuroImage, 20(1), 114-124. https://doi.org/10.1016/S1053-8119(03)00298-2
Google Scholar
Skowron, K., Budzyńska, A., Wiktorczyk-Kapischke, N., Chomacka, K., Grudlewska-Buda, K., Wilk, M., Wałecka-Zacharska, E., Andrzejewska, M., & Gospodarek-Komkowska, E. (2022). The role of psychobiotics in supporting the treatment of disturbances in the functioning of the nervous system - A systematic review. International Journal of Molecular Sciences, 23(14), 7820. https://doi.org/10.3390/ijms23147820
Google Scholar
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4), 427-437. https://doi.org/10.1016/j.ipm.2009.03.002
Google Scholar
Suslow, T., Hußlack, A., Kersting, A., & Bodenschatz, C. M. (2020). Attentional biases to emotional information in clinical depression: A systematic and meta-analytic review of eye tracking findings. Journal of Affective Disorders, 274, 632-642. https://doi.org/10.1016/j.jad.2020.05.140
Google Scholar
Wang, J., Fan, Y., Zhao, X., & Chen, N. (2014). Pupillometry in chinese female patients with depression: A pilot study. International Journal of Environmental Research and Public Health, 11(2), 2236-2243. https://doi.org/10.3390/ijerph110202236
Google Scholar
World Health Organization. (2022). World mental health report: Transforming mental health for all. https://www.who.int/publications/i/item/9789240049338
Google Scholar
Authors
Islam MOHAMEDHigher Technological Institute, Biomedical Engineering Department Egypt
https://orcid.org/0009-0001-4408-7190
Authors
Mohamed EL-WAKADFuture University, Faculty of Engineering and Technology, Biomedical Engineering Department Egypt
https://orcid.org/0000-0003-2637-1048
Authors
Khaled ABBASHigher Technological Institute, Electronics and Communication Department Egypt
https://orcid.org/0009-0002-0913-4163
Authors
Mohamed ABOAMERMajmaah University, College of Applied Medical Sciences, Medical Equipment Technology Department Saudi Arabia
https://orcid.org/0000-0002-4433-776X
Authors
Nader A. Rahman MOHAMEDnader_mohamed@hotmail.com
Misr University for Science and Technology (MUST) - Faculty of Engineering - Biomedical Engineering Department. Egypt
https://orcid.org/0000-0001-7680-306X
Statistics
Abstract views: 57PDF downloads: 17
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Similar Articles
- Nataliya SHABLIY, Serhii LUPENKO, Nadiia LUTSYK, Oleh YASNIY, Olha MALYSHEVSKA, KEYSTROKE DYNAMICS ANALYSIS USING MACHINE LEARNING METHODS , Applied Computer Science: Vol. 17 No. 4 (2021)
- Jerzy JÓZWIK, Magdalena ZAWADA-MICHAŁOWSKA, Monika KULISZ, Paweł TOMIŁO, Marcin BARSZCZ, Paweł PIEŚKO, Michał LELEŃ, Kamil CYBUL, MODELING THE OPTIMAL MEASUREMENT TIME WITH A PROBE ON THE MACHINE TOOL USING MACHINE LEARNING METHODS , Applied Computer Science: Vol. 20 No. 2 (2024)
- Anitha Rani PALAKAYALA, Kuppusamy P, A QUALITATIVE AND QUANTITATIVE APPROACH USING MACHINE LEARNING AND NON-MOTOR SYMPTOMS FOR PARKINSON’S DISEASE CLASSIFICATION. A HIERARCHICAL STUDY , Applied Computer Science: Vol. 20 No. 3 (2024)
- Shahil SHARMA, Rajnesh LAL, Bimal KUMAR, DEVELOPING MACHINE LEARNING APPLICATION FOR EARLY CARDIOVASCULAR DISEASE (CVD) RISK DETECTION IN FIJI: A DESIGN SCIENCE APPROACH , Applied Computer Science: Vol. 20 No. 3 (2024)
- Mohammed Chachan YOUNIS, PREDICTION OF PATIENT’S WILLINGNESS FOR TREATMENT OF MENTAL ILLNESS USING MACHINE LEARNING APPROACHES , Applied Computer Science: Vol. 20 No. 2 (2024)
- Hawkar ASAAD, Shavan ASKAR, Ahmed KAKAMIN, Nayla FAIQ, EXPLORING THE IMPACT OF ARTIFICIAL INTELLIGENCE ON HUMANROBOT COOPERATION IN THE CONTEXT OF INDUSTRY 4.0 , Applied Computer Science: Vol. 20 No. 2 (2024)
- Baigo HAMUNA, Sri PUJIYATI, Jonson Lumban GAOL, Totok HESTIRIANOTO, CLASSIFICATION AND PREDICTION OF BENTHIC HABITAT FROM SCIENTIFIC ECHOSOUNDER DATA: APPLICATION OF MACHINE LEARNING ALGORITHMS , Applied Computer Science: Vol. 20 No. 4 (2024)
- Miguel Angel BELLO RIVERA, Carlos Alberto REYES GARCÍA, Tania Cristal TALAVERA ROJAS, Perfecto Malaquías QUINTERO FLORES, Rodolfo Eleazar PÉREZ LOAIZA, AUTOMATIC IDENTIFICATION OF DYSPHONIAS USING MACHINE LEARNING ALGORITHMS , Applied Computer Science: Vol. 19 No. 4 (2023)
- Lubna RIYAZ, Muheet Ahmed BUTT, Majid ZAMAN, IMPROVING CORONARY HEART DISEASE PREDICTION BY OUTLIER ELIMINATION , Applied Computer Science: Vol. 18 No. 1 (2022)
- Malek M. AL-NAWASHI , Obaida M. AL-HAZAIMEH, Mutaz Kh. KHAZAALEH , A NEW APPROACH FOR BREAST CANCER DETECTION- BASED MACHINE LEARNING TECHNIQUE , Applied Computer Science: Vol. 20 No. 1 (2024)
You may also start an advanced similarity search for this article.