EXAMINATION OF SUMMARIZED MEDICAL RECORDS FOR ICD CODE CLASSIFICATION VIA BERT

Dilek AYDOGAN-KILIC


Aalborg University, Department of Materials and Production, Operations Research Group (Denmark)
https://orcid.org/0000-0002-9194-9400

Deniz Kenan KILIC

denizkk@mp.aau.dk
Array (Denmark)
https://orcid.org/0000-0002-6996-3425

Izabela Ewa NIELSEN


Aalborg University, Department of Materials and Production, Operations Research Group (Denmark)
https://orcid.org/0000-0002-3506-2741

Abstract

The International Classification of Diseases (ICD) is utilized by member countries of the World Health Organization (WHO). It is a critical system to ensure worldwide standardization of diagnosis codes, which enables data comparison and analysis across various nations. The ICD system is essential in supporting payment systems, healthcare research, service planning, and quality and safety management. However, the sophisticated and intricate structure of the ICD system can sometimes cause issues such as longer examination times, increased training expenses, a greater need for human resources, problems with payment systems due to inaccurate coding, and unreliable data in health research. Additionally, machine learning models that use automated ICD systems face difficulties with lengthy medical notes. To tackle this challenge, the present study aims to utilize Medical Information Mart for Intensive Care (MIMIC-III) medical notes that have been summarized using the term frequency-inverse document frequency (TF-IDF) method. These notes are further analyzed using deep learning, specifically bidirectional encoder representations from transformers (BERT), to classify disease diagnoses based on ICD codes. Even though the proposed methodology using summarized data provides lower accuracy performance than state-of-the-art methods, the performance results obtained are promising in terms of continuing the study of extracting summary input and more important features, as it provides real-time ICD code classification and more explainable inputs.


Keywords:

Artificial intelligence, Natural language processing (NLP), Classification problem, International classification of diseases (ICD), Bidirectional Encoder Representations from Transformers (BERT), MIMIC-III

Alsentzer, E., Murphy, J. R., Boag, W., Weng, W. H., Jin, D., Naumann, T., & McDermott, M. (2019). Publicly available clinical BERT embeddings. arXiv preprint. https://doi.org/10.48550/arXiv.1904.03323
DOI: https://doi.org/10.18653/v1/W19-1909   Google Scholar

Baumel, T., Nassour-Kassis, J., Cohen, R., Elhadad, M., & Elhadad, N. (2018, June). Multi-label classification of patient notes: case study on ICD code assignment. In Workshops at the thirty-second AAAI conference on artificial intelligence.
  Google Scholar

Bhargava, P., Drozd, A., & Rogers, A. (2021). Generalization in NLI: Ways (not) to go beyond simple heuristics. arXiv preprint. https://doi.org/10.48550/arXiv.2110.01518
DOI: https://doi.org/10.18653/v1/2021.insights-1.18   Google Scholar

Cao, P., Chen, Y., Liu, K., Zhao, J., Liu, S., & Chong, W. (2020a, July). HyperCore: Hyperbolic and co-graph representation for automatic ICD coding. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3105-3114. https://doi.org/10.18653/v1/2020.acl-main.282
DOI: https://doi.org/10.18653/v1/2020.acl-main.282   Google Scholar

Cao, P., Yan, C., Fu, X., Chen, Y., Liu, K., Zhao, J., Liu, S., & Chong, W. (2020b, July). Clinical-coder: Assigning interpretable ICD-10 codes to Chinese clinical notes. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, 294-301. https://doi.org/10.18653/v1/2020.acl-demos.33
DOI: https://doi.org/10.18653/v1/2020.acl-demos.33   Google Scholar

Chen, P. F., Wang, S. M., Liao, W. C., Kuo, L. C., Chen, K. C., Lin, Y. C., Yang, C., Chiu, C., Chang, S., & Lai, F. (2021). Automatic ICD-10 coding and training system: deep neural network based on supervised learning. JMIR Medical Informatics, 9(8), e23230. https://doi.org/10.2196/23230
DOI: https://doi.org/10.2196/23230   Google Scholar

Chute, C. G., & Çelik, C. (2021). Overview of ICD-11 architecture and structure. BMC medical informatics and decision making, 21(6), 1-7. https://doi.org/10.1186/s12911-021-01539-1
DOI: https://doi.org/10.1186/s12911-021-01539-1   Google Scholar

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint. https://doi.org/10.48550/arXiv.1810.04805
  Google Scholar

Du, Y., Xu, T., Ma, J., Cen, E., Zheng, Y., Liu, T., & Tong, G. (2020). An automatic ICD coding method for clinical records based on deep neural network. Big Data Res, 6(5), 3-15. https://doi.org/10.11959/j.issn.2096-0271.2020040
  Google Scholar

Farkas, R., & Szarvas, G. (2008). Automatic construction of rule-based ICD-9-CM coding systems. BMC bioinformatics, 9 Suppl 3(Suppl 3), S10. https://doi.org/10.1186/1471-2105-9-S3-S10
DOI: https://doi.org/10.1186/1471-2105-9-S3-S10   Google Scholar

Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P. C., Mark, R., Mietus, J. E., Moody, G. B., Peng, C. K., & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation [Online]. 101 (23), pp. e215–e220.
DOI: https://doi.org/10.1161/01.CIR.101.23.e215   Google Scholar

Gu, Y., Tinn, R., Cheng, H., Lucas, M., Usuyama, N., Liu, X., Naumann, T., Gao, J. & Poon, H. (2021). Domain-specific language model pretraining for biomedical natural language processing. ACM Transactions on Computing for Healthcare (HEALTH), 3(1), 1-23. https://doi.org/10.1145/3458754
DOI: https://doi.org/10.1145/3458754   Google Scholar

Harrison, J. E., Weber, S., Jakob, R., & Chute, C. G. (2021). ICD-11: an international classification of diseases for the twenty-first century. BMC medical informatics and decision making, 21(6), 1-10. https://doi.org/10.1186/s12911-021-01534-6
DOI: https://doi.org/10.1186/s12911-021-01534-6   Google Scholar

Hsu, J. L., Hsu, T. J., Hsieh, C. H., & Singaravelan, A. (2020). Applying convolutional neural networks to predict the ICD-9 codes of medical records. Sensors, 20(24), 7116. https://doi.org/10.3390/s20247116
DOI: https://doi.org/10.3390/s20247116   Google Scholar

Huang, C. W., Tsai, S. C., & Chen, Y. N. (2022). PLM-ICD: automatic ICD coding with pretrained language models. arXiv preprint. https://doi.org/10.48550/arXiv.2207.05289
DOI: https://doi.org/10.18653/v1/2022.clinicalnlp-1.2   Google Scholar

Huang, J., Osorio, C., & Sy L. W. (2019). An empirical evaluation of deep learning for ICD-9 code assignment using MIMIC-III clinical notes. Computer Methods and Programs in Biomedicine, 177, 141–153. https://doi.org/10.1016/j.cmpb.2019.05.024
DOI: https://doi.org/10.1016/j.cmpb.2019.05.024   Google Scholar

Johnson, A., Pollard, T., & Mark, R. (2016a). MIMIC-III Clinical Database (version 1.4). PhysioNet. https://doi.org/10.13026/C2XW26
  Google Scholar

Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L. W. H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Celi, L. A., & Mark, R. G. (2016b). MIMIC-III, a freely accessible critical care database. Scientific data, 3(1), 1-9. https://doi.org/10.1038/sdata.2016.35
DOI: https://doi.org/10.1038/sdata.2016.35   Google Scholar

Kaur, R., & Ginige, J. A. (2018). Comparative analysis of algorithmic approaches for auto-coding with ICD-10-AM and ACHI. Studies in health technology and informatics, 252, 73-79. https://doi.org/10.3233/978-1-61499-890-7-73
  Google Scholar

Kaur, R., Ginige, J. A., & Obst, O. (2021). A systematic literature review of automated ICD coding and classification systems using discharge summaries. arXiv preprint. https://doi.org/10.48550/arXiv.2107.10652
  Google Scholar

Li, F., & Yu, H. (2020, April). ICD coding from clinical text using multi-filter residual convolutional neural network. In proceedings of the AAAI conference on artificial intelligence, 34(05), pp. 8180-8187. https://doi.org/10.1609/aaai.v34i05.6331
DOI: https://doi.org/10.1609/aaai.v34i05.6331   Google Scholar

Li, M., Fei, Z., Zeng, M., Wu, F. X., Li, Y., Pan, Y., & Wang, J. (2019). Automated ICD-9 coding via a deep learning approach. IEEE/ACM transactions on computational biology and bioinformatics, 16(4), 1193-1202. https://doi.org/10.1109/TCBB.2018.2817488
DOI: https://doi.org/10.1109/TCBB.2018.2817488   Google Scholar

Marafino, B. J., Davies, J. M., Bardach, N. S., Dean, M. L., & Dudley, R. A. (2014). N-gram support vector machines for scalable procedure and diagnosis classification, with applications to clinical free text data from the intensive care unit. Journal of the American Medical Informatics Association, 21(5), 871-875. https://doi.org/10.1136/amiajnl-2014-002694
DOI: https://doi.org/10.1136/amiajnl-2014-002694   Google Scholar

Minh, D., Wang, H. X., Li, Y. F., & Nguyen, T. N. (2022). Explainable artificial intelligence: a comprehensive review. Artificial Intelligence Review, 1-66. https://doi.org/10.1007/s10462-021-10088-y
DOI: https://doi.org/10.1007/s10462-021-10088-y   Google Scholar

Moons, E., Khanna, A., Akkasi, A., & Moens, M. F. (2020). A comparison of deep learning methods for ICD coding of clinical records. Applied Sciences, 10(15), 5262. https://doi.org/10.3390/app10155262
DOI: https://doi.org/10.3390/app10155262   Google Scholar

Mullenbach, J., Wiegreffe, S., Duke, J., Sun, J., & Eisenstein, J. (2018). Explainable Prediction of Medical Codes from Clinical Text. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1101–1111, New Orleans, Louisiana. Association for Computational Linguistics. https://doi.org/10.18653/v1/N18-1100
DOI: https://doi.org/10.18653/v1/N18-1100   Google Scholar

Nawalkar, N., Attar, V. Z., & Kalamkar, S. P. (2022). Automated icd-9 medical code assignment from given free text using deep learning approach. In Advances in Data and Information Sciences: Proceedings of ICDIS 2021 (pp. 317-327). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-16-5689-7_28
DOI: https://doi.org/10.1007/978-981-16-5689-7_28   Google Scholar

Pascual, D., Luck, S., & Wattenhofer, R. (2021). Towards BERT-based automatic ICD coding: Limitations and opportunities. arXiv preprint. https://doi.org/10.48550/arXiv.2104.06709
DOI: https://doi.org/10.18653/v1/2021.bionlp-1.6   Google Scholar

Perotte, A., Pivovarov, R., Natarajan, K., Weiskopf, N., Wood, F., & Elhadad, N. (2014). Diagnosis code assignment: models and evaluation metrics. Journal of the American Medical Informatics Association, 21(2), 231-237. https://doi.org/10.1136/amiajnl-2013-002159
DOI: https://doi.org/10.1136/amiajnl-2013-002159   Google Scholar

Pezzella, P. (2022). The ICD‐11 is now officially in effect. World Psychiatry, 21(2), 331.8. https://doi.org/10.1002/wps.20982
DOI: https://doi.org/10.1002/wps.20982   Google Scholar

Ponthongmak, W., Thammasudjarit, R., McKay, G. J., Attia, J., Theera-Ampornpunt, N., & Thakkinstian, A. (2023). Development and external validation of automated ICD-10 coding from discharge summaries using deep learning approaches. Informatics in Medicine Unlocked, 38, 101227. https://doi.org/10.1016/j.imu.2023.101227
DOI: https://doi.org/10.1016/j.imu.2023.101227   Google Scholar

Rios, A., & Kavuluru, R. (2018). Few-Shot and Zero-Shot Multi-Label Learning for Structured Label Spaces. Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing, 2018, 3132–3142. NIH Public Access.
DOI: https://doi.org/10.18653/v1/D18-1352   Google Scholar

Scheurwegs, E., Luyckx, K., Luyten, L., Daelemans, W., & Van den Bulcke, T. (2016). Data integration of structured and unstructured sources for assigning clinical codes to patient stays. Journal of the American Medical Informatics Association, 23(e1), e11-e19. https://doi.org/10.1093/jamia/ocv115
DOI: https://doi.org/10.1093/jamia/ocv115   Google Scholar

Shi, H., Xie, P., Hu, Z., Zhang, M., & Xing, E. P. (2017). Towards automated ICD coding using deep learning. arXiv preprint. https://doi.org/10.48550/arXiv.1711.04075
  Google Scholar

Singaravelan, A., Hsieh, C. H., Liao, Y. K., & Hsu, J. L. (2021). Predicting icd-9 codes using self-report of patients. Applied Sciences, 11(21), 10046. https://doi.org/10.3390/app112110046
DOI: https://doi.org/10.3390/app112110046   Google Scholar

Tabassum, A., & Patil, R. R. (2020). A survey on text pre-processing & feature extraction techniques in natural language processing. International Research Journal of Engineering and Technology (IRJET), 7(06), 4864-4867.
  Google Scholar

Teng, F., Liu, Y., Li, T., Zhang, Y., Li, S., & Zhao, Y. (2022). A review on deep neural networks for ICD coding. IEEE Transactions on Knowledge and Data Engineering, 35(5), 4357-4375. https://doi.org/10.1109/TKDE.2022.3148267
DOI: https://doi.org/10.1109/TKDE.2022.3148267   Google Scholar

Turc, I., Chang, M. W., Lee, K., & Toutanova, K. (2019). Well-read students learn better: The impact of student initialization on knowledge distillation. arXiv preprint. https://doi.org/10.48550/arXiv.1908.08962
  Google Scholar

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30. Curran Associates, Inc.
  Google Scholar

Vu, T., Nguyen, D. Q., & Nguyen, A. (2020). A label attention model for ICD coding from clinical text. arXiv preprint. https://doi.org/10.48550/arXiv.2007.06351
DOI: https://doi.org/10.24963/ijcai.2020/461   Google Scholar

Wang, D., Su, J., & Yu, H. (2020). Feature Extraction and Analysis of Natural Language Processing for Deep Learning English Language. IEEE Access, 8, 46335-46345. https://doi.org/10.1109/ACCESS.2020.2974101
DOI: https://doi.org/10.1109/ACCESS.2020.2974101   Google Scholar

Wang, G., Li, C., Wang, W., Zhang, Y., Shen, D., Zhang, X., Henao, R., & Carin, L. (2018). Joint embedding of words and labels for text classification. arXiv preprint. https://doi.org/10.48550/arXiv.1805.04174
DOI: https://doi.org/10.18653/v1/P18-1216   Google Scholar

Wu, X., Zhao, Y., Yang, Y., Liu, Z., & Clifton, D. A. (2022). A Comparison of Representation Learning Methods for Medical Concepts in MIMIC-IV. medRxiv, 2022-08. http://dx.doi.org/10.2139/ssrn.4583878
DOI: https://doi.org/10.1101/2022.08.21.22278835   Google Scholar

Yan, C., Fu, X., Liu, X., Zhang, Y., Gao, Y., Wu, J., & Li, Q. (2022). A survey of automated International Classification of Diseases coding: development, challenges, and applications. Intelligent Medicine, 2(3), 161-173. https://doi.org/10.1016/j.imed.2022.03.003
DOI: https://doi.org/10.1016/j.imed.2022.03.003   Google Scholar

Zeng, M., Li, M., Fei, Z., Yu, Y., Pan, Y., & Wang, J. (2019). Automatic ICD-9 coding via deep transfer learning. Neurocomputing, 324, 43-50. https://doi.org/10.1016/j.neucom.2018.04.081
DOI: https://doi.org/10.1016/j.neucom.2018.04.081   Google Scholar

Zhang, Z., Liu, J., & Razavian, N. (2020). BERT-XML: Large scale automated ICD coding using BERT pretraining. arXiv preprint. https://doi.org/10.48550/arXiv.2006.03685
DOI: https://doi.org/10.18653/v1/2020.clinicalnlp-1.3   Google Scholar

Download


Published
2024-06-30

Cited by

AYDOGAN-KILIC, D., KILIC, D. K., & NIELSEN, I. E. (2024). EXAMINATION OF SUMMARIZED MEDICAL RECORDS FOR ICD CODE CLASSIFICATION VIA BERT. Applied Computer Science, 20(2), 60–74. https://doi.org/10.35784/acs-2024-16

Authors

Dilek AYDOGAN-KILIC 

Aalborg University, Department of Materials and Production, Operations Research Group Denmark
https://orcid.org/0000-0002-9194-9400

Authors

Deniz Kenan KILIC 
denizkk@mp.aau.dk
Array Denmark
https://orcid.org/0000-0002-6996-3425

Authors

Izabela Ewa NIELSEN 

Aalborg University, Department of Materials and Production, Operations Research Group Denmark
https://orcid.org/0000-0002-3506-2741

Statistics

Abstract views: 315
PDF downloads: 142


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Most read articles by the same author(s)

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.