THE POTENTIAL OF ARTIFICIAL INTELLIGENCE IN HUMAN RESOURCE MANAGEMENT

Loubna BOUHSAIEN

loubna.bouhsaien@etu.uae.ac.ma
Abdelmalek Essaadi University (Morocco)
https://orcid.org/0009-0003-7216-6667

Abdellah AZMANI


Abdelmalek Essaadi University (Morocco)
https://orcid.org/0000-0003-4975-3807

Abstract

The growth of Artificial Intelligence (AI) technologies is revolutionizing Human Resource (HR) practices, offering new opportunities for organizations to optimize their operations and better support for their workforce in an era defined by technological advancement. In this context, the emergence of industry 5.0 highlights human-centricity, resilience, and sustainability, promoting collaboration between humans and technology. This article conducts a bibliometric analysis to explore the intersection of AI and Human Resources Management (HRM), highlighting trends, research directions, and the evolving landscape of this thematic. Through performance analysis, social structure assessment, and thematic evolution examination, this study identifies key themes, emerging topics, and research trends. The findings underscore the transformative potential of AI in reshaping HRM and organizational dynamics, calling for more research and strategic applications of AI technologies to foster adaptive strategies and informed decision-making in the era of industry 5.0.


Keywords:

Artificial Intelligence, Bibliometric Analysis, Human Resources Management

Abdeldayem, M. M., & Aldulaimi, S. H. (2020). Trends and opportunities of Artificial Intelligence in human resource management: Aspirations for public sector in Bahrain. International Journal of Scientific & Technology Research, 9(01), 3867- 3871.
  Google Scholar

Alcalde-Bezhold, G., Alcázar-Arroyo, R., Angoso-de-Guzmán, M., Arenas, M. D., Arias-Guillén, M., Arribas-Cobo, P., Díaz-Gómez, J. M., García-Maset, R., González-Parra, E., Hernández-Marrero, D., Herrero-Calvo, J. A., Maduell, F., Molina, P., Molina-Núñez, M., Otero-González, A., Pascual, J., Pereira-García, M., Pérez-García, R., Dolores Del Pino Y Pino, M., … De Sequera-Ortiz, P. (2021). Hemodialysis centers guide 2020. Nefrología (English Edition), 41, 1-77. https://doi.org/10.1016/S2013-2514(22)00042-6
  Google Scholar

Baraibar-Diez, E., Luna, M., Odriozola, M. D., & Llorente, I. (2020). Mapping social impact: A bibliometric analysis. Sustainability, 12(22). 9389. https://doi.org/10.3390/su12229389
  Google Scholar

Bondarouk, T., & Meijerink, J. (Eds.). (2024). Research handbook on human resource management and disruptive technologies. Edward Elgar Publishing.
  Google Scholar

Bouhsaien, L. (2024, May 24). Database BA. https://drive.google.com/drive/folders/1sr6nQoMI0Tyy5VEuK1vcMELVpMhlqAzk
  Google Scholar

Bouhsaien, L., & Azmani, A. (2024). Burnout: A pervasive challenge threatening workplace well-being and organizational success. International Journal of Professional Business Review, 9(4), e04597. https://doi.org/10.26668/businessreview/2024.v9i4.4597
  Google Scholar

Budhwar, P., Malik, A., De Silva, M. T. T., & Thevisuthan, P. (2022). Artificial intelligence – challenges and opportunities for international HRM: A review and research agenda. The International Journal of Human Resource Management, 33(6), 1065–1097. https://doi.org/10.1080/09585192.2022.2035161
  Google Scholar

Choudhury, P. (Raj), Foroughi, C., & Larson, B. (2021). Work‐from‐anywhere: The productivity effects of geographic flexibility. Strategic Management Journal, 42(4), 655–683. https://doi.org/10.1002/smj.3251
  Google Scholar

Chowdhury, S., Dey, P., Joel-Edgar, S., Bhattacharya, S., Rodriguez-Espindola, O., Abadie, A., & Truong, L. (2023). Unlocking the value of artificial intelligence in human resource management through AI capability framework. Human Resource Management Review, 33(1), 100899. https://doi.org/10.1016/j.hrmr.2022.100899
  Google Scholar

Danvila-del-Valle, I., Estévez-Mendoza, C., & Lara, F. J. (2019). Human resources training: A bibliometric analysis. Journal of Business Research, 101, 627–636. https://doi.org/10.1016/j.jbusres.2019.02.026
  Google Scholar

Deepa, R., Sekar, S., Malik, A., Kumar, J., & Attri, R. (2024). Impact of AI-focussed technologies on social and technical competencies for HR managers – A systematic review and research agenda. Technological Forecasting and Social Change, 202, 123301. https://doi.org/10.1016/j.techfore.2024.123301
  Google Scholar

Derviş, H. (2020). Bibliometric analysis using Bibliometrix an R Package. Journal of Scientometric Research, 8(3), 156–160. https://doi.org/10.5530/jscires.8.3.32
  Google Scholar

Dixon, J., Hong, B., & Wu, L. (2021). The robot revolution: Managerial and employment consequences for firms. Management Science, 67(9), 5586–5605. https://doi.org/10.1287/mnsc.2020.3812
  Google Scholar

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
  Google Scholar

Fernandes França, T. J., São Mamede, H., Pereira Barroso, J. M., & Pereira Duarte Dos Santos, V. M. (2023). Artificial intelligence applied to potential assessment and talent identification in an organisational context. Heliyon, 9(4), e14694. https://doi.org/10.1016/j.heliyon.2023.e14694
  Google Scholar

Foroudi, P., Akarsu, T. N., Marvi, R., & Balakrishnan, J. (2021). Intellectual evolution of social innovation: A bibliometric analysis and avenues for future research trends. Industrial Marketing Management, 93, 446–465. https://doi.org/10.1016/j.indmarman.2020.03.026
  Google Scholar

Fosso Wamba, S., Bawack, R. E., Guthrie, C., Queiroz, M. M., & Carillo, K. D. A. (2021). Are we preparing for a good AI society? A bibliometric review and research agenda. Technological Forecasting and Social Change, 164, 120482. https://doi.org/10.1016/j.techfore.2020.120482
  Google Scholar

Galán Hernández, J. J., Marín Díaz, G., & Galdón Salvador, J. L. (2024). Artificial Intelligence applied to human resources management: A bibliometric analysis. In Á. Rocha, C. Ferrás, J. Hochstetter Diez, & M. Diéguez Rebolledo (Eds.), Information Technology and Systems (Vol. 932, pp. 269–277). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-54235-0_25
  Google Scholar

Garg, S., Sinha, S., Kar, A. K., & Mani, M. (2022). A review of machine learning applications in human resource management. International Journal of Productivity and Performance Management, 71(5), 1590–1610. https://doi.org/10.1108/IJPPM-08-2020-0427
  Google Scholar

Gong, X., De Pessemier, T., Martens, L., & Joseph, W. (2019). Energy- and labor-aware flexible job shop scheduling under dynamic electricity pricing: A many-objective optimization investigation. Journal of Cleaner Production, 209, 1078–1094. https://doi.org/10.1016/j.jclepro.2018.10.289
  Google Scholar

Guenole, N., & Feinzig, S. (2018). The business case for AI in HR. IBM Smarter Workforce Institute.
  Google Scholar

Jefroy, N., Azarian, M., & Yu, H. (2022). Moving from Industry 4.0 to Industry 5.0: What are the implications for smart logistics? Logistics, 6(2), 26. https://doi.org/10.3390/logistics6020026
  Google Scholar

Kong, H., Yuan, Y., Baruch, Y., Bu, N., Jiang, X., & Wang, K. (2021). Influences of artificial intelligence (AI) awareness on career competency and job burnout. International Journal of Contemporary Hospitality Management, 33(2), 717–734. https://doi.org/10.1108/IJCHM-07-2020-0789
  Google Scholar

Laviola, F., Cucari, N., & Novic, H. (2024). Artificial intelligence in personal development from cradle to grave: A comprehensive review of HRD literature. Sinergie Italian Journal of Management, 42(1), 121–163. https://doi.org/10.7433/s123.2024.06
  Google Scholar

Moral-Muñoz, J. A., Herrera-Viedma, E., Santisteban-Espejo, A., & Cobo, M. J. (2020). Software tools for conducting bibliometric analysis in science: An up-to-date review. El Profesional de La Información, 29(1). https://doi.org/10.3145/epi.2020.ene.03
  Google Scholar

Morgan, N., & Pritchard, A. (2019). Gender matters in hospitality. International Journal of Hospitality Management, 76, 38–44. https://doi.org/10.1016/j.ijhm.2018.06.008
  Google Scholar

Mumu, J. R., Tahmid, T., & Azad, Md. A. K. (2021). Job satisfaction and intention to quit: A bibliometric review of work-family conflict and research agenda. Applied Nursing Research, 59, 151334. https://doi.org/10.1016/j.apnr.2020.151334
  Google Scholar

Ortega-Cotto, N., Bhuyan, R., LaGrand, C., & Caldwell, C. (2022). Strategic human resource management – distinguishing between the urgent and the important. Business and Management Research, 12(1), 1. https://doi.org/10.5430/bmr.v12n1p1
  Google Scholar

Palos-Sánchez, P. R., Baena-Luna, P., Badicu, A., & Infante-Moro, J. C. (2022). Artificial Intelligence and human resources management: A bibliometric analysis. Applied Artificial Intelligence, 36(1), 2145631. https://doi.org/10.1080/08839514.2022.2145631
  Google Scholar

Pedraja-Rejas, L., Rodríguez-Ponce, E., & Muñoz-Fritis, C. (2022). Human resource management and performance in Ibero-America: Bibliometric analysis of scientific production. Cuadernos de Gestión, 22(2), 123–137. https://doi.org/10.5295/cdg.211569lp
  Google Scholar

Pejic-Bach, M., Bertoncel, T., Meško, M., & Krstić, Ž. (2020). Text mining of industry 4.0 job advertisements. International Journal of Information Management, 50, 416–431. https://doi.org/10.1016/j.ijinfomgt.2019.07.014
  Google Scholar

Ryu, J., Seo, J., Jebelli, H., & Lee, S. (2019). Automated action recognition using an accelerometer-embedded wristband-type activity Tracker. Journal of Construction Engineering and Management, 145(1), 04018114. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001579
  Google Scholar

Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial Intelligence in human resources management: challenges and a path forward. California Management Review, 61(4), 15–42. https://doi.org/10.1177/0008125619867910
  Google Scholar

Tong, S., Jia, N., Luo, X., & Fang, Z. (2021). The Janus face of Artificial Intelligence feedback: Deployment versus disclosure effects on employee performance. Strategic Management Journal, 42(9), 1600–1631. https://doi.org/10.1002/smj.3322
  Google Scholar

Torres-Salazar, E., Cruzado-Yesquén, K., Alvarez-Vasquez, H., Saavedra-Ruíz, J., Castañeda-Hipólito, M., Gastiaburú-Morales, S., Barandiarán-Gamarra, J., Vásquez-Coronado, M., & Alviz-Meza, A. (2024). A bibliometric study with statistical patterns of industry 4.0 on business management in the decade. Journal of Physics: Conference Series, 2726(1), 012009. https://doi.org/10.1088/1742-6596/2726/1/012009
  Google Scholar

Toumia, O., & Zouari, F. (2024). Artificial Intelligence and venture capital decision-making: In R. Sharma, K. Mehta, & P. Yu (Eds.), Advances in Business Strategy and Competitive Advantage (pp. 16–38). IGI Global. https://doi.org/10.4018/979-8-3693-1326-8.ch002
  Google Scholar

Vlačić, B., Corbo, L., Costa E Silva, S., & Dabić, M. (2021). The evolving role of Artificial Intelligence in marketing: A review and research agenda. Journal of Business Research, 128, 187–203. https://doi.org/10.1016/j.jbusres.2021.01.055
  Google Scholar

Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2022). Artificial intelligence, robotics, advanced technologies and human resource management: A systematic review. The International Journal of Human Resource Management, 33(6), 1237–1266. https://doi.org/10.1080/09585192.2020.1871398
  Google Scholar

Download


Published
2024-09-30

Cited by

BOUHSAIEN, L., & AZMANI, A. (2024). THE POTENTIAL OF ARTIFICIAL INTELLIGENCE IN HUMAN RESOURCE MANAGEMENT. Applied Computer Science, 20(3), 153–170. https://doi.org/10.35784/acs-2024-34

Authors

Loubna BOUHSAIEN 
loubna.bouhsaien@etu.uae.ac.ma
Abdelmalek Essaadi University Morocco
https://orcid.org/0009-0003-7216-6667

Authors

Abdellah AZMANI 

Abdelmalek Essaadi University Morocco
https://orcid.org/0000-0003-4975-3807

Statistics

Abstract views: 288
PDF downloads: 107


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.