COMPUTATIONAL SYSTEM FOR EVALUATING HUMAN PERCEPTION IN VIDEO STEGANOGRAPHY
Article Sidebar
Open full text
Issue Vol. 20 No. 4 (2024)
-
STUDY ON DEEP LEARNING MODELS FOR THE CLASSIFICATION OF VR SICKNESS LEVELS
Haechan NA, Yoon Sang KIM1-13
-
ENHANCING TOMATO LEAF DISEASE DETECTION THROUGH MULTIMODAL FEATURE FUSION
Puja SARAF, Jayantrao PATIL, Rajnikant WAGH14-38
-
NOVEL MULTI-MODAL OBSTRUCTION MODULE FOR DIABETES MELLITUS CLASSIFICATION USING EXPLAINABLE MACHINE LEARNING
Reehana SHAIK, Ibrahim SIDDIQUE39-62
-
COMPUTATIONAL SYSTEM FOR EVALUATING HUMAN PERCEPTION IN VIDEO STEGANOGRAPHY
Marcin PERY, Robert WASZKOWSKI63-76
-
PUPIL DIAMETER AND MACHINE LEARNING FOR DEPRESSION DETECTION: A COMPARATIVE STUDY WITH DEEP LEARNING MODELS
Islam MOHAMED, Mohamed EL-WAKAD, Khaled ABBAS, Mohamed ABOAMER, Nader A. Rahman MOHAMED77-99
-
CLASSIFICATION AND PREDICTION OF BENTHIC HABITAT FROM SCIENTIFIC ECHOSOUNDER DATA: APPLICATION OF MACHINE LEARNING ALGORITHMS
Baigo HAMUNA, Sri PUJIYATI, Jonson Lumban GAOL, Totok HESTIRIANOTO100-116
-
ENHANCEMENT OF ARTIFICIAL IMMUNE SYSTEMS FOR THE TRAVELING SALESMAN PROBLEM THROUGH HYBRIDIZATION WITH NEIGHBORHOOD IMPROVEMENT AND PARAMETER FINE-TUNING
Peeraya THAPATSUWAN, Warattapop THAPATSUWAN, Chaichana KULWORATIT117-137
-
EVALUATING LARGE LANGUAGE MODELS FOR MEDICAL INFORMATION EXTRACTION: A COMPARATIVE STUDY OF ZERO-SHOT AND SCHEMA-BASED METHODS
Zakaria KADDARI, Ikram El HACHMI, Jamal BERRICH, Rim AMRANI, Toumi BOUCHENTOUF138-148
-
EXPLORING THE EXPEDIENCY OF BLOCKCHAIN-BASED SOLUTIONS: REVIEW AND CHALLENGES
Francisco Javier MORENO ARBOLEDA, Georgia GARANI, Sergio Andrés ARBOLEDA ZULUAGA149-174
-
FEASIBILITY OF USING LOW-PARAMETER LOCAL LLMS IN ANSWERING QUESTIONS FROM ENTERPRISE KNOWLEDGE BASE
Marcin BADUROWICZ, Stanisław SKULIMOWSKI, Maciej LASKOWSKI175-191
-
SHARPNESS IMPROVEMENT OF MAGNETIC RESONANCE IMAGES USING A GUIDED-SUBSUMED UNSHARP MASK FILTER
Manar AL-ABAJI, Zohair AL-AMEEN192-210
-
FUZZY REGION MERGING WITH HIERARCHICAL CLUSTERING TO FIND OPTIMAL INITIALIZATION OF FUZZY REGION IN IMAGE SEGMENTATION
Wawan GUNAWAN211-220
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
This paper presents a comprehensive computational system designed to evaluate the undetectability of video steganography from human perspective. The system assesses the perceptibility of steganographic modifications to the human eye while simultaneously determining the minimum encoding level required for successful automated decoding of hidden messages. The proposed architecture comprises four subsystems: steganogram database preparation, human evaluation, automated decoding, and comparative analysis. The system was tested using example steganographic techniques applied to a dataset of video files. Experimental results revealed the thresholds of human-level undetectability and automated decoding for each technique, enabling the identification of critical differences between human and algorithmic detection capabilities. This research contributes to the field of steganography by offering a novel framework for evaluating the trade-offs between human perception and automated decoding in video-based information hiding. The system serves as a tool for advancing the development of more secure and reliable video steganographic techniques.
Keywords:
References
Anderson, R., & Petitcolas, F. (1998). On the limits of steganography. IEEE Journal on Selected Areas in Communications, 16(4), 474-481. https://doi.org/10.1109/49.668971 DOI: https://doi.org/10.1109/49.668971
Chan, C.-K., & Cheng, L. (2004). Hiding data in images by simple LSB substitution. Pattern Recognition, 37(3), 469-474. https://doi.org/10.1016/j.patcog.2003.08.007 DOI: https://doi.org/10.1016/j.patcog.2003.08.007
Cox, I., Miller, M., Bloom, J., Fridrich, J., & Kalker, T. (2007). Digital watermarking and steganography. Morgan Kaufmann Publishers. DOI: https://doi.org/10.1016/B978-012372585-1.50015-2
DensoWave. (2024). QR code. https://www.qrcode.com/
Fridrich, J. (2009). Steganography in digital media: Principles, algorithms, and applications. Cambridge University Press, 277-292. https://doi.org/10.1017/CBO9781139192903.014 DOI: https://doi.org/10.1017/CBO9781139192903.014
Hossain, M. A., Noor, N. U., Ullah, A., Noman, S. H., Pranta, S. D., Bristy, L. M., & Bashar, M. (2024) Enhancing video steganography techniques, using hybrid algorithms. Open Access Library Journal, 11, e11489. https://doi.org/10.4236/oalib.1111489 DOI: https://doi.org/10.4236/oalib.1111489
Huynh-Thu, Q., & Ghanbari, M. (2008). Scope of validity of PSNR in image/video quality assessment. Electronics Letters, 44(13), 800-801. https://doi.org/10.1049/el:20080522 DOI: https://doi.org/10.1049/el:20080522
Jangid, S., & Sharma, S. (2017). High PSNR based video steganography by MLC(multi-level clustering) algorithm. 2017 International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 589-594). IEEE. https://doi.org/10.1109/ICCONS.2017.8250530 DOI: https://doi.org/10.1109/ICCONS.2017.8250530
Johnson, N. F., & Jajodia, S. (1998). Exploring steganography, seeing the unseen. IEEE Computer, 31(2), 26-34. https://doi.org/10.1109/MC.1998.4655281 DOI: https://doi.org/10.1109/MC.1998.4655281
Kadhim, I. J., Premaratne, P., Vial, P. J., & Halloran, B. (2019). Comprehensive survey of image steganography: Techniques, evaluations, and trends in future research. Neurocomputing, 335, 299-326. https://doi.org/10.1016/j.neucom.2018.06.075 DOI: https://doi.org/10.1016/j.neucom.2018.06.075
Kahn, D. (1967). The codebreakers: The story of secret writing. Macmillan.
Katzenbeisser, S. & Petitcolas, F. (2000). Information hiding techniques for steganography and digital watermarking. Artech House, 28(6), 1-2. https://doi.org/10.1201/1079/43263.28.6.20001201/30373.5 DOI: https://doi.org/10.1201/1079/43263.28.6.20001201/30373.5
Kunhoth, J., Subramanian, N., Al-Maadeed, S., & Bouridane, A. (2023). Video steganography: Recent advances and challenges. Springer - Multimedia Tools and Applications, 82, 41943-41985. https://doi.org/10.1007/s11042-023-14844-w DOI: https://doi.org/10.1007/s11042-023-14844-w
Majeed, N. D., Al-Askery, A., & Hasan, F. S. (2024). Hybrid video steganography and cryptography techniques: Review paper. The Fifth Scientific Conference for Electrical Engineering Techniques Research (EETR2024) (020013). AIP Publishing. https://doi.org/10.1063/5.0236185 DOI: https://doi.org/10.1063/5.0236185
Petitcolas, F. A. P., Anderson, R. J., & Kuhn, M. G. (1999). Information hiding - a survey. Proceedings of the IEEE, 87(7), 1062-1078. https://doi.org/10.1109/5.771065 DOI: https://doi.org/10.1109/5.771065
Pixabay.com. (2024). Pixabay License. https://pixabay.com/service/license-summary/
Sencar, H. T., Ramkumar, M., & Akansu, A. N. (2004). Data hiding fundamentals and applications. Elsevier Academic Press. DOI: https://doi.org/10.1016/B978-012047144-7/50008-X
Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x DOI: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Stern, M. K., & Johnson, J. H. (2010). Just noticeable difference. In I. B. Weiner & W. E. Craighead (Eds.), The Corsini Encyclopedia of Psychology (1st ed., pp. 1-2). Wiley. https://doi.org/10.1002/9780470479216.corpsy0481 DOI: https://doi.org/10.1002/9780470479216.corpsy0481
Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600-612. https://doi.org/10.1109/TIP.2003.819861 DOI: https://doi.org/10.1109/TIP.2003.819861
Article Details
Abstract views: 320
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
