PREDICTING STATES OF EPILEPSY PATIENTS USING DEEP LEARNING MODELS

Boutkhil SIDAOUI

b.sidaoui@cuniv-naama.dz
University Center SALHI Ahmed, Computer Science Department (Algeria)
https://orcid.org/0000-0001-7276-2897

Abstract

In this study, the authors present and scrutinize two deep learning models designed for predicting the states of epilepsy patients by utilizing extracted data from their brain's electrical activities recorded in electroencephalography (EEG) signals. The proposed models leverage deep learning networks, with the first being a recurrent neural network known as Long Short-Term Memory (LSTM), and the second a non-recurrent network in the form of a Deep Feedforward Network (DFN) architecture. To construct and execute the DFN and LSTM architectures, the authors rely on 22 characteristics extracted from diverse EEG signals, forming a comprehensive dataset from five patients. The primary goal is to forecast impending epilepsy seizures and categorize three distinct states of brain activity in epilepsy patients. The models put forward yield promising results, particularly in terms of classification rates, across various preceding seizure timeframes ranging from 5 to 50 minutes.


Keywords:

Epilepsy Seizure, EEG, prediction, Deep learning, LSTM

Awad, M., & Khanna, R. (2015). Efficient Learning Machines: Theories, concepts, and applications for engineers and system designers. Apress Berkeley.
  Google Scholar

Behbahani, S., Jafarnia Dabanloo, N., Motie Nasrabadi, A., Teixeira, C. A., & Dourado, A. (2014). A new algorithm for detection of epileptic seizures based on HRV signal. Journal of Experimental & Theoretical Artificial Intelligence, 26(2), 251-265. https://doi.org/10.1080/0952813X.2013.861874
  Google Scholar

Boualoulou, N., Belhoussine Drissi, T., & Nsiri, M. (2023). CNN and LSTM for the classification of Parkinson's disease based on the GTCC and MFCC. Applied Computer Science, 19(2), 1-24. https://doi.org/10.35784/acs-2023-11
  Google Scholar

Hu, Z., Tang, S., Luo, Y., Jian, F., & Si, X. (2021). 3DACRNN model based on residual network for speech emotion classification. Engineering Letters, 29(2), 400-407.
  Google Scholar

Kim, T., Nguyen, P., Pham, N., Bui, N., Truong, H., Ha, S., & Vu, T. (2020). Epileptic seizure detection and experimental treatment: A review. Frontiers in Neurology, 11(701), 080510. https://doi.org/10.3389%2Ffneur.2020.00701
  Google Scholar

Klatt, J., Feldwisch-Drentrup, H., Ihle, M., Navarro, V., Neufang, M., Teixeira, C., Adam, C., Valderrama, M., Alvarado-Rojas, C., Witon, A., Le Van Quyen, M., Sales, F., Dourado, A., Timmer, J., Schulze-Bonhage, A., & Schelter, B. (2012). The EPILEPSIAE database: An extensive electroencephalography database of epilepsy patients. Epilepsia, 53(9), 1669–1676. https://doi.org/10.1111/j.1528-1167.2012.03564.x
  Google Scholar

Krukow, P., Jonak, K., Karpiński, R., & Karakuła-Juchnowicz, H. (2019) Abnormalities in hubs location and nodes centrality predict cognitive slowing and increased performance variability in first-episode schizophrenia patients. scientific reports, 9, 9594. https://doi.org/10.1038/s41598-019-46111-0
  Google Scholar

Kumar, V. B., Bharath, V., Kumar, K., Vijayalakshmi, M. I., & Padmavathamma (2019). A hybrid data mining approach for diabetes prediction and classification. Proceedings of The World Congress on Engineering and Computer Science (WCECS) (pp. 298-303).
  Google Scholar

Li, Y., Yu, Z., Chen, Y., Yang, C., Li, Y., Li, A. X., & Li, B. (2020). Automatic seizure detection using fully convolutional nested LSTM. International Journal of Neural Systems, 30(4), 2050019. https://doi.org/10.1142/S0129065720500197
  Google Scholar

Martinez-del-Rincon, J., Santofimia, M. J., del Toro, X., Barba, J., Romero, F., Navas, P., & Lopez, J. C. (2017). Non-linear classifiers applied to EEG analysis for epilepsy seizure detection. Expert Systems with Applications, 86, 99-112. https://doi.org/10.1016/j.eswa.2017.05.052
  Google Scholar

Nielsen, M. A. (2015). Neural Networks and Deep Learning. Determination Press.
  Google Scholar

Ramantani, G., Maillard, L., & Koessler, L., (2016). Correlation of invasive EEG and scalp EEG. Seizure Journal, 41, 196-200. https://doi.org/10.1016/j.seizure.2016.05.018
  Google Scholar

Ramgopal, S., Thome-Souza, S., Jackson, M., Kadish, N. E., Fernández, I. S., Klehm, J., Bosl, W., Reinsberger, C., Schachter, S., & Loddenkemper, T. (2014). Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy & Behavior, 37, 291-307. https://doi.org/10.1016/j.yebeh.2014.06.023
  Google Scholar

Teixeira, C. A., Direito, B., Feldwisch-Drentrup, H., Valderrama, M., Costa, R. P., Alvarado-Rojas, C., Nikolopoulos, S., Le Van Quyen, M., Timmer, J., Schelter, B., & Dourado, A. (2011). EPILAB: A software package for studies on the prediction of epileptic seizures. Journal of Neuroscience Methods, 200(2), 257-271. https://doi.org/10.1016/j.jneumeth.2011.07.002
  Google Scholar

Tzallas, A. T., Tsipouras, M. G., & Fotiadis, D. I. (2007). Automatic seizure detection based on time-frequency analysis and artificial neural networks. Computational Intelligence and Neuroscience, 2007(1), 080510. https://doi.org/10.1155/2007/80510
  Google Scholar

Tzallas, A. T., Tsipouras, M. G., & Fotiadis, D. I. (2009). Epileptic seizure detection in EEGs using time–frequency analysis. IEEE Transactions on Information Technology in Biomedicine, 13(5), 703-710. https://doi.org/10.1109/TITB.2009.2017939
  Google Scholar

Vani, S., Suresh, G. R., Balakumaran, T., & Cross, T. A. (2019). EEG signal analysis for automated epilepsy seizure detection using wavelet transform and Artificial Neural Network. Journal of Medical Imaging and Health Informatics, 9(6), 1301-1306. https://doi.org/10.1166/jmihi.2019.2713
  Google Scholar

Webb, A. R., & Copsey, K. D. (2002). Statistical Pattern Recognition. John Wiley & Sons Ltd.
  Google Scholar

Willems, L. M., Reif, P. S., Spyrantis, A., Cattani, A., Freiman, T. M., Seifert, V., Wagne, M., You, S.-J., Schubert-Bast, S., Bauer, S., Klein, K. M., Rosenow, F., & Strzelczyk, A. (2019). Invasive EEG-electrodes in presurgical evaluation of epilepsies: Systematic analysis of implantation-, video-EEG-monitoring- and explantation-related complications, and review of literature. Epilepsy & Behavior, 91, 30-37. https://doi.org/10.1016/j.yebeh.2018.05.012
  Google Scholar

Yindeedej, V., Uda, T., Tanoue, Y., Kojima, Y., Kawashima, T., Koh, S., Uda, H., Nishiyama, T., Takagawa, M., Shuto, F., Goto, T., (2024). A scoping review of seizure onset pattern in SEEG and a proposal for morphological classification. Journal of Clinical Neuroscience, 123, 84-90. https://doi.org/10.1016/j.jocn.2024.03.024
  Google Scholar

Yoki Donzia, S. K., & Kon Kim, H. (2019). Recurrent Neural Network with sequence to sequence model to translate language based on TensorFlow. Proceedings of the World Congress on Engineering and Computer Science 2019 (WCECS 2019) (pp. 401-405).
  Google Scholar

Yuan, H., Li, Y., Yang, J., Li, H., Yang, Q., Guo, C., Zhu, S., & Shu, X. (2021). State of the art of non-invasive electrode materials for brain-computer interface. Micromachines, 12(12), 1521. https://doi.org/10.3390/mi12121521
  Google Scholar

Download


Published
2024-06-30

Cited by

SIDAOUI, B. (2024). PREDICTING STATES OF EPILEPSY PATIENTS USING DEEP LEARNING MODELS. Applied Computer Science, 20(2), 109–125. https://doi.org/10.35784/acs-2024-19

Authors

Boutkhil SIDAOUI 
b.sidaoui@cuniv-naama.dz
University Center SALHI Ahmed, Computer Science Department Algeria
https://orcid.org/0000-0001-7276-2897

Statistics

Abstract views: 20
PDF downloads: 9


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

<< < 2 3 4 5 6 7 

You may also start an advanced similarity search for this article.