PREDICTION OF PATIENT’S WILLINGNESS FOR TREATMENT OF MENTAL ILLNESS USING MACHINE LEARNING APPROACHES
Article Sidebar
Open full text
Issue Vol. 20 No. 2 (2024)
-
FEW-SHOT LEARNING WITH PRE-TRAINED LAYERS INTEGRATION APPLIED TO HAND GESTURE RECOGNITION FOR DISABLED PEOPLE
Mohamed ELBAHRI, Nasreddine TALEB, Sid Ahmed El Mehdi ARDJOUN, Chakib Mustapha Anouar ZOUAOUI1-23
-
DIGITAL NEWS CLASSIFICATION AND PUNCTUACTION USING MACHINE LEARNING AND TEXT MINING TECHNIQUES
Fernando Andrés CEVALLOS SALAS24-42
-
MODELING THE OPTIMAL MEASUREMENT TIME WITH A PROBE ON THE MACHINE TOOL USING MACHINE LEARNING METHODS
Jerzy JÓZWIK, Magdalena ZAWADA-MICHAŁOWSKA, Monika KULISZ, Paweł TOMIŁO, Marcin BARSZCZ, Paweł PIEŚKO, Michał LELEŃ, Kamil CYBUL43-59
-
EXAMINATION OF SUMMARIZED MEDICAL RECORDS FOR ICD CODE CLASSIFICATION VIA BERT
Dilek AYDOGAN-KILIC, Deniz Kenan KILIC, Izabela Ewa NIELSEN60-74
-
THE UTILIZATION OF 6G IN INDUSTRY 4.0
Hanan M. SHUKUR, Shavan ASKAR, Subhi R.M. ZEEBAREE75-89
-
APPLICATION OF EEMD-DFA ALGORITHMS AND ANN CLASSIFICATION FOR DETECTION OF KNEE OSTEOARTHRITIS USING VIBROARTHROGRAPHY
Anna MACHROWSKA, Robert KARPIŃSKI, Marcin MACIEJEWSKI, Józef JONAK, Przemysław KRAKOWSKI90-108
-
PREDICTING STATES OF EPILEPSY PATIENTS USING DEEP LEARNING MODELS
Boutkhil SIDAOUI109-125
-
IMPROVING E-LEARNING BY FACIAL EXPRESSION ANALYSIS
Amina KINANE DAOUADJI, Fatima BENDELLA126-137
-
EXPLORING THE IMPACT OF ARTIFICIAL INTELLIGENCE ON HUMANROBOT COOPERATION IN THE CONTEXT OF INDUSTRY 4.0
Hawkar ASAAD, Shavan ASKAR, Ahmed KAKAMIN, Nayla FAIQ138-156
-
AN AUTHENTICATION METHOD BASED ON A DIOPHANTINE MODEL OF THE COIN BAG PROBLEM
Krzysztof NIEMIEC, Grzegorz BOCEWICZ157-174
-
PREDICTION OF PATIENT’S WILLINGNESS FOR TREATMENT OF MENTAL ILLNESS USING MACHINE LEARNING APPROACHES
Mohammed Chachan YOUNIS175-193
-
AUTOMATION OF POLYCYSTIC OVARY SYNDROME DIAGNOSTICS THROUGH MACHINE LEARNING ALGORITHMS IN ULTRASOUND IMAGING
Roman GALAGAN, Serhiy ANDREIEV, Nataliia STELMAKH; Yaroslava RAFALSKA; Andrii MOMOT194-204
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
Mental illness is a physical condition that significantly changes a person’s thoughts, emotions, and capacity to interact with others. The purpose of this study was to explore the application of Artificial Intelligence (AI) and Machine Learning (ML) algorithms in predicting behaviour regarding seeking treatment for mental illnesses, to support healthcare providers in reaching out to and supporting individuals more likely to seek treatment, leading to early detection, enhanced outcomes. The Open Sourcing Mental Illness (OSMI) dataset contains 1259 samples used for research and experiment. The study uses several classifiers (Random Forest, Gradient Boosting, SVM, KNN, and Logistic Regression) to take advantage on their unique capabilities and applicability for various parts of the prediction task. Experiments performed in Jupiter notebook and the major findings revealed varying levels of accuracy among the classifiers, with the Random Forest and 0.81 and Gradient Boosting classifiers 0.83 achieving highest accuracy, while the accuracy for SVM 0.82 and KNN 0.83 also give good result but Logistic Regression classifier had a lower accuracy 0.8. In conclusion, this research demonstrates the potential of AI and machine learning in predicting individual behaviour and offers valuable insights into mental health treatment-seeking behaviour.
Keywords:
References
Ameer, I., Arif, M., Sidorov, G., Gòmez-Adorno, H., & Gelbukh, A. (2022). Mental illness classification on social media texts using deep learning and transfer learning. ArXiv, abs/2207.01012. https://doi.org/10.48550/arXiv.2207.01012
Balaji, P., Chaurasia, M. A., Bilfaqih, S. M., Muniasamy, A., & Alsid, L. E. G. (2023). Hybridized Deep Learning approach for detecting Alzheimer’s disease. Biomedicines, 11(1), 149. https://doi.org/10.3390/biomedicines11010149 DOI: https://doi.org/10.3390/biomedicines11010149
Bijl, R. V., Ravelli, A., & van Zessen, G. (1998). Prevalence of psychiatric disorder in the general population: results of The Netherlands Mental Health Survey and Incidence Study (NEMESIS). Social psychiatry and psychiatric epidemiology, 33, 587-595. https://doi.org/10.1007/s001270050098 DOI: https://doi.org/10.1007/s001270050098
Chen, Y., Wang, Y., Cao, L., & Jin, Q. (2018). An effective feature selection scheme for healthcare data classification using binary particle swarm optimization. 2018 9th international conference on information technology in medicine and education (ITME) (pp. 703-707). IEEE. https://doi.org/10.1109/ITME.2018.0016017 DOI: https://doi.org/10.1109/ITME.2018.00160
Chung, J., & Teo, J. (2023). Single classifier vs. ensemble Machine Learning approaches for mental health prediction. Brain informatics, 10, 1. https://doi.org/10.1186/s40708-022-00180-6 DOI: https://doi.org/10.1186/s40708-022-00180-6
Dao, T. T. (2011). Investigation on evolutionary computation techniques of a nonlinear system. Modelling and Simulation in Engineering, 2011(1), 496732. https://doi.org/10.1155/2011/496732 DOI: https://doi.org/10.1155/2011/496732
Goodman, R., Renfrew, D., & Mullick, M. (2000). Predicting type of psychiatric disorder from Strengths and Difficulties Questionnaire (SDQ) scores in child mental health clinics in London and Dhaka. European child & adolescent psychiatry, 9, 129-134. https://doi.org/10.1007/s007870050008 DOI: https://doi.org/10.1007/s007870050008
Hassan, F., Hussain, S. F., & Qaisar, S. M. (2023). Fusion of multivariate EEG signals for schizophrenia detection using CNN and machine learning techniques. Information Fusion, 92, 466-478. https://doi.org/10.1016/j.inffus.2022.12.019 DOI: https://doi.org/10.1016/j.inffus.2022.12.019
Hewner, S., Smith, E., & Sullivan, S. S. (2023). Identifying high-need primary care patients using nursing knowledge and Machine Learning methods. Applied Clinical Informatics, 14(03), 408-417. https://doi.org/10.1055/a-2048-7343 DOI: https://doi.org/10.1055/a-2048-7343
Hingorani, M. (2021). Detection of mental illness using machine learning and deep learning. 6th North American International Conference on Industrial Engineering and Operations Management.
Iyer, M. V., Kadlag, M. T., Patil, M. M., Pillai, M. A., & Moholkar, K. P. (2022). Virtual self care companion - Detection of mental illness using machine learning and deep learning. Specialusis Ugdymas, 1(43), 5955-5964.
Jung, Y., & Yoon, Y. I. (2017). Multi-level assessment model for wellness service based on human mental stress level. Multimedia Tools and Applications, 76, 11305-11317. https: //doi.org/10.1007/s11042-016-3444-9 DOI: https://doi.org/10.1007/s11042-016-3444-9
McLaren, T., Peter, L. J., Tomczyk, S., Muehlan, H., Schomerus, G., & Schmidt, S. (2023). The seeking mental health care model: prediction of help-seeking for depressive symptoms by stigma and mental illness representations. BMC Public Health, 23, 69. https://doi.org/10.1186/s12889-022-14937-5 DOI: https://doi.org/10.1186/s12889-022-14937-5
Open Sourcing Mental Illness. (2016). Mental Health in Tech Survey: Survey on Mental Health in the Tech Workplace in 2014. Kaggle. https://www.kaggle.com/datasets/osmi/mental-health-in-tech-survey
Saito, T., Suzuki, H., & Kishi, A. (2022). Predictive modeling of mental illness onset using wearable devices and medical examination data: Machine Learning approach. Frontiers in Digital Health, 4, 861808. https://doi.org/10.3389/fdgth.2022.861808 DOI: https://doi.org/10.3389/fdgth.2022.861808
Singh, P., Srinivas, K. K., Peddi, A., Shabarinath, B., Neelima, I., & Bhagavathi, K. A. (2022). Artificial Intelligence based early detection and timely diagnosis of mental illness - A review. 2022 International Mobile and Embedded Technology Conference (MECON) (pp. 282-286). IEEE. https://doi.org/10.1109/MECON53876.2022.9752219 DOI: https://doi.org/10.1109/MECON53876.2022.9752219
Soomro, T. A., Zheng, L., Afifi, A. J., Ali, A., Soomro, S., Yin, M., & Gao, J. (2022). Image segmentation for MR brain tumor detection using machine learning: A Review. IEEE Reviews in Biomedical Engineering, 16, 70-90. https://doi.org/10.1109/RBME.2022.3185292 DOI: https://doi.org/10.1109/RBME.2022.3185292
Strauss, J., Peguero, A. M., & Hirst, G. (2013). Machine learning methods for clinical forms analysis in mental health. IOS Press, 192, 1024. https://doi.org/10.3233/978-1-61499-289-9-1024
Sumathy, B., Kumar, A., Sungeetha, D., Hashmi, A., Saxena, A., Kumar Shukla, P., & Nuagah, S. J. (2022). Machine Learning technique to detect and classify mental illness on social media using lexicon-based recommender system. Computational Intelligence and Neuroscience, 2022(1), 9790823. https://doi.org/10.1155/2022/5906797 DOI: https://doi.org/10.1155/2022/5906797
Sun, Y., Todorovic, S., & Goodison, S. (2009). Local-learning-based feature selection for high-dimensional data analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9), 1610-1626. https://doi.org/10.1109/TPAMI.2009.190 DOI: https://doi.org/10.1109/TPAMI.2009.190
Muehlensiepen, F., Petit, P., Knitza, J., Welcker, M., & Vuillerme, N. (2024). Prediction of the acceptance of telemedicine among rheumatic patients: a machine learning-powered secondary analysis of German survey data. Rheumatology International, 44, 523-534. https://doi.org/10.1007/s00296-023-05518-9 DOI: https://doi.org/10.1007/s00296-023-05518-9
Nova, K. (2023). Machine Learning approaches for automated mental disorder classification based on social media textual data. Contemporary Issues in Behavioral and Social Sciences, 7(1), 70-83.
Tan, M., Xiao, Y., Jing, F., Xie, Y., Lu, S., Xiang, M., & Ren, H. (2024). Evaluating machine learning-enabled and multimodal data-driven exercise prescriptions for mental health: a randomized controlled trial protocol. Frontiers in psychiatry, 15, 1352420. https://doi.org/10.3389/fpsyt.2024.1352420 DOI: https://doi.org/10.3389/fpsyt.2024.1352420
Wu, C.-H., Hsu, J.-H., Liou, C.-R., Su, H.-Y., Lin, E. C.-L., & Chen, P.-S. (2023). Automatic bipolar disorder assessment using Machine Learning with smartphone-based digital phenotyping. IEEE Access, 11, 121845-121858. https://doi.org/10.1109/ACCESS.2023.3328342 DOI: https://doi.org/10.1109/ACCESS.2023.3328342
Yeung, H. W., Stolicyn, A., Buchanan, C. R., Tucker-Drob, E. M., Bastin, M. E., Luz, S., McIntosh, A. M., Whalley, H. C., Cox, S. R., & Smith, K. (2023). Predicting sex, age, general cognition and mental health with machine learning on brain structural connectomes. Human Brain Mapping, 44(5), 1913-1933. https://doi.org/10.1002/hbm.26182 DOI: https://doi.org/10.1002/hbm.26182
Article Details
Abstract views: 654
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
