AUTOMATION OF POLYCYSTIC OVARY SYNDROME DIAGNOSTICS THROUGH MACHINE LEARNING ALGORITHMS IN ULTRASOUND IMAGING
Article Sidebar
Open full text
Issue Vol. 20 No. 2 (2024)
-
FEW-SHOT LEARNING WITH PRE-TRAINED LAYERS INTEGRATION APPLIED TO HAND GESTURE RECOGNITION FOR DISABLED PEOPLE
Mohamed ELBAHRI, Nasreddine TALEB, Sid Ahmed El Mehdi ARDJOUN, Chakib Mustapha Anouar ZOUAOUI1-23
-
DIGITAL NEWS CLASSIFICATION AND PUNCTUACTION USING MACHINE LEARNING AND TEXT MINING TECHNIQUES
Fernando Andrés CEVALLOS SALAS24-42
-
MODELING THE OPTIMAL MEASUREMENT TIME WITH A PROBE ON THE MACHINE TOOL USING MACHINE LEARNING METHODS
Jerzy JÓZWIK, Magdalena ZAWADA-MICHAŁOWSKA, Monika KULISZ, Paweł TOMIŁO, Marcin BARSZCZ, Paweł PIEŚKO, Michał LELEŃ, Kamil CYBUL43-59
-
EXAMINATION OF SUMMARIZED MEDICAL RECORDS FOR ICD CODE CLASSIFICATION VIA BERT
Dilek AYDOGAN-KILIC, Deniz Kenan KILIC, Izabela Ewa NIELSEN60-74
-
THE UTILIZATION OF 6G IN INDUSTRY 4.0
Hanan M. SHUKUR, Shavan ASKAR, Subhi R.M. ZEEBAREE75-89
-
APPLICATION OF EEMD-DFA ALGORITHMS AND ANN CLASSIFICATION FOR DETECTION OF KNEE OSTEOARTHRITIS USING VIBROARTHROGRAPHY
Anna MACHROWSKA, Robert KARPIŃSKI, Marcin MACIEJEWSKI, Józef JONAK, Przemysław KRAKOWSKI90-108
-
PREDICTING STATES OF EPILEPSY PATIENTS USING DEEP LEARNING MODELS
Boutkhil SIDAOUI109-125
-
IMPROVING E-LEARNING BY FACIAL EXPRESSION ANALYSIS
Amina KINANE DAOUADJI, Fatima BENDELLA126-137
-
EXPLORING THE IMPACT OF ARTIFICIAL INTELLIGENCE ON HUMANROBOT COOPERATION IN THE CONTEXT OF INDUSTRY 4.0
Hawkar ASAAD, Shavan ASKAR, Ahmed KAKAMIN, Nayla FAIQ138-156
-
AN AUTHENTICATION METHOD BASED ON A DIOPHANTINE MODEL OF THE COIN BAG PROBLEM
Krzysztof NIEMIEC, Grzegorz BOCEWICZ157-174
-
PREDICTION OF PATIENT’S WILLINGNESS FOR TREATMENT OF MENTAL ILLNESS USING MACHINE LEARNING APPROACHES
Mohammed Chachan YOUNIS175-193
-
AUTOMATION OF POLYCYSTIC OVARY SYNDROME DIAGNOSTICS THROUGH MACHINE LEARNING ALGORITHMS IN ULTRASOUND IMAGING
Roman GALAGAN, Serhiy ANDREIEV, Nataliia STELMAKH; Yaroslava RAFALSKA; Andrii MOMOT194-204
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
This article presents a study aimed at using machine learning to automate the analysis of ultrasound images in the diagnosis of polycystic ovary syndrome (PCOS). Today, various laboratory and instrumental methods are used to diagnose PCOS, including the analysis of ultrasound images performed by medical professionals. The peculiarity of such analysis is that it requires high qualification of medical professionals and can be subjective. The aim of this work is to develop a software module based on convolutional neural networks (CNN), which will improve the accuracy and objectivity of diagnosing polycystic disease as one of the clinical manifestations of PCOS. By using CNNs, which have proven to be effective in image processing and classification, it becomes possible to automate the analysis process and reduce the influence of the human factor on the diagnosis result. The article describes a machine learning model based on CNN architecture, which was proposed by the authors for analyzing ultrasound images in order to determine polycystic disease. In addition, the article emphasizes the importance of the interpretability of the CNN model. For this purpose, the Gradient-weighted Class Activation Mapping (Grad-CAM) visualization method was used, which allows to identify the image areas that most affect the model's decision and provides clear explanations for each individual prediction.
Keywords:
References
Azziz, R. M. D. (2016). Introduction: Determinants of polycystic ovary syndrome. Fertility and Sterility, 106(1), 4-5. https://doi.org/10.1016/j.fertnstert.2016.05.009 DOI: https://doi.org/10.1016/j.fertnstert.2016.05.016
Bulsara, J., Patel, P., Soni, A., & Acharya, S. (2021). A review: Brief insight into Polycystic Ovarian syndrome. Endocrine and Metabolic Science, 3, 100085. https://doi.org/10.1016/j.endmts.2021.100085 DOI: https://doi.org/10.1016/j.endmts.2021.100085
Chai, J., Zeng, H., Li, A., & Ngai, E. W. (2021). Deep Learning in computer vision: A critical review of emerging techniques and application scenarios. Machine Learning with Applications, 6, 100134. https://doi.org/10.1016/j.mlwa.2021.100134 DOI: https://doi.org/10.1016/j.mlwa.2021.100134
Chicco, D., & Jurman, G. (2023). The Matthews correlation coefficient (MCC) should replace the ROC AUC as the standard metric for assessing binary classification. BioData Mining, 16, 4. https://doi.org/10.1186/s13040-023-00322-4 DOI: https://doi.org/10.1186/s13040-023-00322-4
Chicco, D., Tötsch, N., & Jurman, G. (2021). The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation. BioData Mining, 14, 13. https://doi.org/10.1186/s13040-021-00244-z DOI: https://doi.org/10.1186/s13040-021-00244-z
Choudhari, A., & Korde, A. (2022). PCOS detection using ultrasound images. Kaggle. Retrieved 01.03.2024 from https://www.kaggle.com/datasets/anaghachoudhari/PCOS-detection-using-ultrasound-images
Christ, J., & Cedars, M. (2023). Current guidelines for diagnosing PCOS. Diagnostics, 13(6), 1113. https://doi.org/10.3390/diagnostics13061113 DOI: https://doi.org/10.3390/diagnostics13061113
Deswal, R., Narwal, V., Dang, A., & Pundir, C. S. (2020). The prevalence of polycystic ovary syndrome: A brief review. Journal of human reproductive sciences, 13(4), 261-271. https://doi.org/10.4103/jhrs.jhrs_95_18 DOI: https://doi.org/10.4103/jhrs.JHRS_95_18
Dwivedi, S., Ujjaliya, M. K., & Kaushik, A. (2019) Assessment of the best predictor for diagnosis of polycystic ovarian disease in color Doppler study of ovarian artery. International Journal of Scientific Study, 6(12), 154-162.
Esteva, A., Chou, K., Yeung, S., Naik, N., Madani, A., Mottaghi, A., Liu, Y., Topol, E., Dean, J., & Socher, R. (2021). Deep Learning - enabled medical computer vision. npj Digital Medicine, 4, 5. https://doi.org/10.1038/s41746-020-00376-2 DOI: https://doi.org/10.1038/s41746-020-00376-2
Garad, R. M., & Teede, H. J. (2020). Polycystic ovary syndrome: improving policies, awareness, and clinical care. Current Opinion in Endocrine and Metabolic Research, 12, 112-118. https://doi.org/10.1016/j.coemr.2020.04.007 DOI: https://doi.org/10.1016/j.coemr.2020.04.007
Gyliene, A., Straksyte, V. & Zaboriene, I. (2022). Value of ultrasonography parameters in diagnosing polycystic ovary syndrome. Open Medicine, 17(1), 1114-1122. https://doi.org/10.1515/med-2022-0505 DOI: https://doi.org/10.1515/med-2022-0505
Hassaballah, M., & Awad, A. I. (Eds.). (2020). Deep learning in computer vision: principles and applications. CRC Press Taylor & Francis Group. DOI: https://doi.org/10.1201/9781351003827
Hoeger, K., Dokras, A., & Piltonen, T. (2021). Update on PCOS: consequences, challenges, and guiding treatment. The Journal of Clinical Endocrinology & Metabolism, 106(3), e1071-e1083. https://doi.org/10.1210/clinem/dgaa839 DOI: https://doi.org/10.1210/clinem/dgaa839
Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2022). Diagnostics of articular cartilage damage based on generated acoustic signals using ANN - Part II: Patellofemoral joint. Sensors, 22(10), 3765. https://doi.org/10.3390/s22103765 DOI: https://doi.org/10.3390/s22103765
Kshatri, S. S., & Singh, D. (2023). Convolutional Neural Network in medical image analysis: A review. Archives of Computational Methods in Engineering, 30, 2793-2810. https://doi.org/10.1007/s11831-023-09898-w DOI: https://doi.org/10.1007/s11831-023-09898-w
Liu, J., Wu, Q., Hao, Y., Jiao, M., Wang, X., Jiang, S., & Han, L. (2021). Measuring the global disease burden of polycystic ovary syndrome in 194 countries: Global burden of disease study 2017. Human Reproduction, 36(4), 1108-1119. https://doi.org/10.1093/humrep/deaa371 DOI: https://doi.org/10.1093/humrep/deaa371
Rasquin, L. I., Anastasopoulou, C., & Mayrin, J. V. (2022). Polycystic ovarian disease. StatPearls.
Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. (2004). Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertility and sterility, 81(1), 19-25. https://doi.org/10.1016/j.fertnstert.2003.10.004 DOI: https://doi.org/10.1016/j.fertnstert.2003.10.004
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2020). Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision, 128, 336-359. https://doi.org/10.1007/s11263-019-01228-7 DOI: https://doi.org/10.1007/s11263-019-01228-7
Sirmans, S. M., & Pate, K. A. (2013). Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clinical epidemiology, 6, 1-13. https://doi.org/10.2147/CLEP.S37559 DOI: https://doi.org/10.2147/CLEP.S37559
Teede, H. J., Misso, M. L., Costello, M. F., Dokras, A., Laven, J., Moran, L., Piltonen, T., & Norman, R. J. (2018). Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Clinical endocrinology, 89(3), 251-268. https://doi.org/10.1111/cen.13795 DOI: https://doi.org/10.1111/cen.13795
World Health Organization. (2023). Polycystic ovary syndrome. Retrieved 01.03.2024 from: https://www.who.int/news-room/fact-sheets/detail/polycystic-ovary-syndrome
Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: an overview and application in radiology. Insights into Imaging, 9, 611-629. https://doi.org/10.1007/s13244-018-0639-9 DOI: https://doi.org/10.1007/s13244-018-0639-9
Article Details
Abstract views: 929
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
