AUTOMATION OF POLYCYSTIC OVARY SYNDROME DIAGNOSTICS THROUGH MACHINE LEARNING ALGORITHMS IN ULTRASOUND IMAGING

Roman GALAGAN

r.galagan@kpi.ua
Department of Automation and Non-Destructive Testing Systems “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine (Ukraine)
https://orcid.org/0000-0001-7470-8392

Serhiy ANDREIEV


(Ukraine)
https://orcid.org/0009-0007-4314-6017

Nataliia STELMAKH


National Technical University of Ukraine „Kyiv Polytechnic Institute” (Ukraine)
https://orcid.org/0000-0003-1876-2794

Yaroslava RAFALSKA


Bogomolets National Medical University, Pharmaceutical Faculty, Department of Organization and Economy of Pharmacy (Ukraine)
https://orcid.org/0000-0002-1047-3114

Andrii MOMOT


Department of Automation and Non-Destructive Testing Systems, Igor Sikorsky Kyiv Polytechnic Institute, Faculty of Instrumentation Engineering (Ukraine)
https://orcid.org/0000-0001-9092-6699

Abstract

This article presents a study aimed at using machine learning to automate the analysis of ultrasound images in the diagnosis of polycystic ovary syndrome (PCOS). Today, various laboratory and instrumental methods are used to diagnose PCOS, including the analysis of ultrasound images performed by medical professionals. The peculiarity of such analysis is that it requires high qualification of medical professionals and can be subjective. The aim of this work is to develop a software module based on convolutional neural networks (CNN), which will improve the accuracy and objectivity of diagnosing polycystic disease as one of the clinical manifestations of PCOS. By using CNNs, which have proven to be effective in image processing and classification, it becomes possible to automate the analysis process and reduce the influence of the human factor on the diagnosis result. The article describes a machine learning model based on CNN architecture, which was proposed by the authors for analyzing ultrasound images in order to determine polycystic disease. In addition, the article emphasizes the importance of the interpretability of the CNN model. For this purpose, the Gradient-weighted Class Activation Mapping (Grad-CAM) visualization method was used, which allows to identify the image areas that most affect the model's decision and provides clear explanations for each individual prediction.


Keywords:

polycystic ovary syndrome, PCOS, ultrasound imaging, Neural Networks, grad-CAM, Python programming

Azziz, R. M. D. (2016). Introduction: Determinants of polycystic ovary syndrome. Fertility and Sterility, 106(1), 4-5. https://doi.org/10.1016/j.fertnstert.2016.05.009
DOI: https://doi.org/10.1016/j.fertnstert.2016.05.016   Google Scholar

Bulsara, J., Patel, P., Soni, A., & Acharya, S. (2021). A review: Brief insight into Polycystic Ovarian syndrome. Endocrine and Metabolic Science, 3, 100085. https://doi.org/10.1016/j.endmts.2021.100085
DOI: https://doi.org/10.1016/j.endmts.2021.100085   Google Scholar

Chai, J., Zeng, H., Li, A., & Ngai, E. W. (2021). Deep Learning in computer vision: A critical review of emerging techniques and application scenarios. Machine Learning with Applications, 6, 100134. https://doi.org/10.1016/j.mlwa.2021.100134
DOI: https://doi.org/10.1016/j.mlwa.2021.100134   Google Scholar

Chicco, D., & Jurman, G. (2023). The Matthews correlation coefficient (MCC) should replace the ROC AUC as the standard metric for assessing binary classification. BioData Mining, 16, 4. https://doi.org/10.1186/s13040-023-00322-4
DOI: https://doi.org/10.1186/s13040-023-00322-4   Google Scholar

Chicco, D., Tötsch, N., & Jurman, G. (2021). The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation. BioData Mining, 14, 13. https://doi.org/10.1186/s13040-021-00244-z
DOI: https://doi.org/10.1186/s13040-021-00244-z   Google Scholar

Choudhari, A., & Korde, A. (2022). PCOS detection using ultrasound images. Kaggle. Retrieved 01.03.2024 from https://www.kaggle.com/datasets/anaghachoudhari/PCOS-detection-using-ultrasound-images
  Google Scholar

Christ, J., & Cedars, M. (2023). Current guidelines for diagnosing PCOS. Diagnostics, 13(6), 1113. https://doi.org/10.3390/diagnostics13061113
DOI: https://doi.org/10.3390/diagnostics13061113   Google Scholar

Deswal, R., Narwal, V., Dang, A., & Pundir, C. S. (2020). The prevalence of polycystic ovary syndrome: A brief review. Journal of human reproductive sciences, 13(4), 261-271. https://doi.org/10.4103/jhrs.jhrs_95_18
DOI: https://doi.org/10.4103/jhrs.JHRS_95_18   Google Scholar

Dwivedi, S., Ujjaliya, M. K., & Kaushik, A. (2019) Assessment of the best predictor for diagnosis of polycystic ovarian disease in color Doppler study of ovarian artery. International Journal of Scientific Study, 6(12), 154-162.
  Google Scholar

Esteva, A., Chou, K., Yeung, S., Naik, N., Madani, A., Mottaghi, A., Liu, Y., Topol, E., Dean, J., & Socher, R. (2021). Deep Learning - enabled medical computer vision. npj Digital Medicine, 4, 5. https://doi.org/10.1038/s41746-020-00376-2
DOI: https://doi.org/10.1038/s41746-020-00376-2   Google Scholar

Garad, R. M., & Teede, H. J. (2020). Polycystic ovary syndrome: improving policies, awareness, and clinical care. Current Opinion in Endocrine and Metabolic Research, 12, 112-118. https://doi.org/10.1016/j.coemr.2020.04.007
DOI: https://doi.org/10.1016/j.coemr.2020.04.007   Google Scholar

Gyliene, A., Straksyte, V. & Zaboriene, I. (2022). Value of ultrasonography parameters in diagnosing polycystic ovary syndrome. Open Medicine, 17(1), 1114-1122. https://doi.org/10.1515/med-2022-0505
DOI: https://doi.org/10.1515/med-2022-0505   Google Scholar

Hassaballah, M., & Awad, A. I. (Eds.). (2020). Deep learning in computer vision: principles and applications. CRC Press Taylor & Francis Group.
DOI: https://doi.org/10.1201/9781351003827   Google Scholar

Hoeger, K., Dokras, A., & Piltonen, T. (2021). Update on PCOS: consequences, challenges, and guiding treatment. The Journal of Clinical Endocrinology & Metabolism, 106(3), e1071-e1083. https://doi.org/10.1210/clinem/dgaa839
DOI: https://doi.org/10.1210/clinem/dgaa839   Google Scholar

Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2022). Diagnostics of articular cartilage damage based on generated acoustic signals using ANN - Part II: Patellofemoral joint. Sensors, 22(10), 3765. https://doi.org/10.3390/s22103765
DOI: https://doi.org/10.3390/s22103765   Google Scholar

Kshatri, S. S., & Singh, D. (2023). Convolutional Neural Network in medical image analysis: A review. Archives of Computational Methods in Engineering, 30, 2793-2810. https://doi.org/10.1007/s11831-023-09898-w
DOI: https://doi.org/10.1007/s11831-023-09898-w   Google Scholar

Liu, J., Wu, Q., Hao, Y., Jiao, M., Wang, X., Jiang, S., & Han, L. (2021). Measuring the global disease burden of polycystic ovary syndrome in 194 countries: Global burden of disease study 2017. Human Reproduction, 36(4), 1108-1119. https://doi.org/10.1093/humrep/deaa371
DOI: https://doi.org/10.1093/humrep/deaa371   Google Scholar

Rasquin, L. I., Anastasopoulou, C., & Mayrin, J. V. (2022). Polycystic ovarian disease. StatPearls.
  Google Scholar

Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. (2004). Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertility and sterility, 81(1), 19-25. https://doi.org/10.1016/j.fertnstert.2003.10.004
DOI: https://doi.org/10.1016/j.fertnstert.2003.10.004   Google Scholar

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2020). Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision, 128, 336-359. https://doi.org/10.1007/s11263-019-01228-7
DOI: https://doi.org/10.1007/s11263-019-01228-7   Google Scholar

Sirmans, S. M., & Pate, K. A. (2013). Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clinical epidemiology, 6, 1-13. https://doi.org/10.2147/CLEP.S37559
DOI: https://doi.org/10.2147/CLEP.S37559   Google Scholar

Teede, H. J., Misso, M. L., Costello, M. F., Dokras, A., Laven, J., Moran, L., Piltonen, T., & Norman, R. J. (2018). Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Clinical endocrinology, 89(3), 251-268. https://doi.org/10.1111/cen.13795
DOI: https://doi.org/10.1111/cen.13795   Google Scholar

World Health Organization. (2023). Polycystic ovary syndrome. Retrieved 01.03.2024 from: https://www.who.int/news-room/fact-sheets/detail/polycystic-ovary-syndrome
  Google Scholar

Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: an overview and application in radiology. Insights into Imaging, 9, 611-629. https://doi.org/10.1007/s13244-018-0639-9
DOI: https://doi.org/10.1007/s13244-018-0639-9   Google Scholar

Download


Published
2024-06-30

Cited by

GALAGAN, R., ANDREIEV, S., STELMAKH, N., RAFALSKA, Y., & MOMOT, A. (2024). AUTOMATION OF POLYCYSTIC OVARY SYNDROME DIAGNOSTICS THROUGH MACHINE LEARNING ALGORITHMS IN ULTRASOUND IMAGING. Applied Computer Science, 20(2), 194–204. https://doi.org/10.35784/acs-2024-24

Authors

Roman GALAGAN 
r.galagan@kpi.ua
Department of Automation and Non-Destructive Testing Systems “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine Ukraine
https://orcid.org/0000-0001-7470-8392

Authors

Serhiy ANDREIEV 

Ukraine
https://orcid.org/0009-0007-4314-6017

Authors

Nataliia STELMAKH 

National Technical University of Ukraine „Kyiv Polytechnic Institute” Ukraine
https://orcid.org/0000-0003-1876-2794

Authors

Yaroslava RAFALSKA 

Bogomolets National Medical University, Pharmaceutical Faculty, Department of Organization and Economy of Pharmacy Ukraine
https://orcid.org/0000-0002-1047-3114

Authors

Andrii MOMOT 

Department of Automation and Non-Destructive Testing Systems, Igor Sikorsky Kyiv Polytechnic Institute, Faculty of Instrumentation Engineering Ukraine
https://orcid.org/0000-0001-9092-6699

Statistics

Abstract views: 323
PDF downloads: 163


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.