EXPLORING THE IMPACT OF ARTIFICIAL INTELLIGENCE ON HUMANROBOT COOPERATION IN THE CONTEXT OF INDUSTRY 4.0

Hawkar ASAAD

hawkar.mohammad@epu.edu.iq
Erbil Polytechnic University, Technical College of Engineering, Department of Information System Engineering (Iraq)
https://orcid.org/0009-0008-7010-0150

Shavan ASKAR


Erbil Polytechnic University, Technical College of Engineering, Department of Information System Engineering (Iraq)
https://orcid.org/0000-0002-9279-8181

Ahmed KAKAMIN


(Iraq)
https://orcid.org/0009-0002-0806-7923

Nayla FAIQ


(Iraq)
https://orcid.org/0009-0002-4182-4199

Abstract

 The function of Artificial Intelligence (AI) in Human-Robot Cooperation (HRC) in Industry 4.0 is unequivocally important and cannot be undervalued. It uses Machine Learning (ML) and Deep Learning (DL) to enhance collaboration between humans and robots in smart manufacturing. These algorithms effectively manage and analyze data from sensors, machinery, and other associated entities. As an outcome, they can extract significant insights that can be beneficial in optimizing the manufacturing process overall. Because dumb manufacturing systems hinder coordination, collaboration, and communication among various manufacturing process components. Consequently, efficiency, quality, and productivity all suffer as a whole. Additionally, Artificial Intelligence (AI) makes it possible to implement sophisticated learning processes that enhance human-robot collaboration and effectiveness when it comes to assembly tasks in the manufacturing domain by enabling learning at a level that is comparable to human-human interactions. When Artificial Intelligence (AI) is widely applied in Human-Robot Cooperation (HRC), a new and dynamic environment for human-robot collaboration is created and responsibilities are divided and distributed throughout social and physical spaces. In conclusion, Artificial Intelligence (AI) plays a crucial and indispensable role in facilitating effective and efficient Human-Robot Cooperation (HRC) within the framework of Industry 4.0. The implementation of Artificial Intelligence (AI)-based algorithms, encompassing deep learning, machine learning, and reinforcement learning, is highly consequential as it enhances human-robot collaboration, streamlines production procedures, and boosts overall productivity, quality, and efficiency in the manufacturing industry.


Keywords:

Industry 4.0, Human-Robot Collaboration, Cobot, Human-Robot Interaction

Abdulazeez, D. H., & Askar, S. K. (2024). A novel offloading mechanism leveraging Fuzzy Logic and Deep Reinforcement Learning to improve IoT application performance in a three-layer architecture within the Fog-Cloud environment. IEEE Access, 12, 39936-39952. https://doi.org/10.1109/ACCESS.2024.3376670
  Google Scholar

Ahmad, M., Sadiq, S., Eshmawi, A. A., Alluhaidan, A. S., Umer, M., Ullah, S., & Nappi, M. (2022). Industry 4.0 technologies and their applications in fighting COVID-19 pandemic using deep learning techniques. Computers in Biology and Medicine, 145, 105418. https://doi.org/10.1016/j.compbiomed.2022.105418
  Google Scholar

Akkaladevi, S. C., Plasch, M., Pichler, A., & Ikeda, M. (2019). Towards reinforcement based learning of an assembly process for human robot collaboration. Procedia Manufacturing, 38, 1491-1498. https://doi.org/10.1016/j.promfg.2020.01.138
  Google Scholar

Alshahrani, S. T. (2023). Industry 4.0 in “Major Emerging Markets”: A systematic literature review of benefits, use, challenges, and mitigation strategies in supply chain management. Sustainability, 15(20), 14811. https://doi.org/10.3390/su152014811
  Google Scholar

Angelopoulos, A., Michailidis, E. T., Nomikos, N., Trakadas, P., Hatziefremidis, A., Voliotis, S., & Zahariadis, T. (2020). Tackling faults in the industry 4.0 era—a survey of machine-learning solutions and key aspects. Sensors, 20(1), 109. https://doi.org/10.3390/s20010109
  Google Scholar

Asad, U., Rasheed, S., Lughmani, W. A., Kazim, T., Khalid, A., & Pannek, J. (2023). Biomechanical modeling of human-robot accident scenarios: A computational assessment for heavy-payload-capacity robots. Applied Sciences, 13(3), 1957. https://doi.org/10.3390/app13031957
  Google Scholar

Baduge, S. K., Thilakarathna, S., Perera, J. S., Arashpour, M., Sharafi, P., Teodosio, B., Shringi, A., & Mendis, P. (2022). Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Automation in Construction, 141, 104440. https://doi.org/10.1016/j.autcon.2022.104440
  Google Scholar

Baratta, A., Cimino, A., Gnoni, M. G., & Longo, F. (2022). Human robot collaboration in Industry 4.0: A literature review. Procedia Computer Science, 217, 1887-1895. https://doi.org/10.1016/j.procs.2022.12.389
  Google Scholar

Bi, Z. M., Luo, M., Miao, Z., Zhang, B., Zhang, W. J., & Wang, L. (2021). Safety assurance mechanisms of collaborative robotic systems in manufacturing. Robotics and Computer-Integrated Manufacturing, 67, 102022. https://doi.org/10.1016/j.rcim.2020.102022
  Google Scholar

Borboni, A., Reddy, K. V. V., Elamvazuthi, I., AL-Quraishi, M. S., Natarajan, E., & Azhar Ali, S. S. (2023). The expanding role of Artificial Intelligence in collaborative robots for industrial applications: A systematic review of recent works. Machines, 11(1), 111. https://doi.org/10.3390/machines11010111
  Google Scholar

Buerkle, A., Eaton, W., Lohse, N., Bamber, T., & Ferreira, P. (2021). EEG based arm movement intention recognition towards enhanced safety in symbiotic human-robot collaboration. Robotics and Computer-Integrated Manufacturing, 70, 102137. https://doi.org/10.1016/j.rcim.2021.102137
  Google Scholar

Chen, X., Wang, N., Cheng, H., & Yang, C. (2020). Neural learning enhanced variable admittance control for human-robot collaboration. IEEE Access, 8, 25727-25737. https://doi.org/10.1109/ACCESS.2020.2969085
  Google Scholar

Cimino, A., Gnoni, M. G., Longo, F., Barone, G., Fedele, M., & Le Piane, D. (2022). Modeling & simulation as Industry 4.0 enabling technology to support manufacturing process design: a real industrial application. Procedia Computer Science, 217, 1877-1886. https://doi.org/10.1016/j.procs.2022.12.388
  Google Scholar

Elsisi, M., Tran, M. Q., Mahmoud, K., Lehtonen, M., & Darwish, M. M. F. (2021). Deep learning-based industry 4.0 and internet of things towards effective energy management for smart buildings. Sensors, 21(4), 1038. https://doi.org/10.3390/s21041038
  Google Scholar

Ferrarini, S., Bilancia, P., Raffaeli, R., Peruzzini, M., & Pellicciari, M. (2024). A method for the assessment and compensation of positioning errors in industrial robots. Robotics and Computer-Integrated Manufacturing, 85, 102622. https://doi.org/10.1016/j.rcim.2023.102622
  Google Scholar

Fiestas Lopez Guido, J. C., Kim, J. W., Popkowski Leszczyc, P. T. L., Pontes, N., & Tuzovic, S. (2024). Retail robots as sales assistants: how speciesism moderates the effect of robot intelligence on customer perceptions and behaviour. Journal of Service Theory and Practice, 34(1), 127-154. https://doi.org/10.1108/JSTP-04-2023-0123
  Google Scholar

Fu, J., Lin, H., Xu, W., & Gan, D. (2022). A novel variable stiffness compliant robotic link based on discrete variable stiffness units for safe human-robot interaction. Mechanisms and Robotics Conference, 7(46), V007T07A009. https://doi.org/10.1115/DETC2022-89825
  Google Scholar

Ghadirzadeh, A., Chen, X., Yin, W., Yi, Z., Björkman, M., & Kragic, D. (2020). Human-centered collaborative robots with deep reinforcement learning. ArXiv, abs/2007.01009. https://doi.org/10.48550/arXiv.2007.01009
  Google Scholar

Gomes, N. M., Martins, F. N., Lima, J., & Wörtche, H. (2022). Reinforcement learning for collaborative robots pick-and-place applications: A case study. Automation, 3(1), 223-241. https://doi.org/10.3390/automation3010011
  Google Scholar

Gómez-Hernández, J.-F., Gutiérrez-Hernández, J.-M., Jimeno-Morenilla, A., Sánchez-Romero, J.-L., & Fabregat-Periago, M.-D. (2024). Development of an integrated robotic workcell for automated bonding in footwear manufacturing. IEEE Access, 12, 5066-5080. https://doi.org/10.1109/ACCESS.2024.3350441
  Google Scholar

Goodrich, M. A., & Schultz, A. C. (2007). Human-robot interaction: A survey. Foundations and Trends in Human-Computer Interaction, 1(3), 203-275. https://doi.org/10.1561/1100000005
  Google Scholar

Guerra-Zubiaga, D. A., dos Santos, M. C., Voicu, R. C., Richards, G., Gosnell, S., Franco Barbosa, G. (2023). A digital twin approach to support a multi-task industrial robot operation using design of experiments. https://doi.org/10.21203/rs.3.rs-3425601/v1
  Google Scholar

Heo, Y. J., Kim, D., Lee, W., Kim, H., Park, J., & Chung, W. K. (2019). Collision detection for industrial collaborative robots: A deep learning approach. IEEE Robotics and Automation Letters, 4(2), 740-746. https://doi.org/10.1109/LRA.2019.2893400
  Google Scholar

Hjorth, S., & Chrysostomou, D. (2022). Human-robot collaboration in industrial environments: A literature review on non-destructive disassembly. Robotics and Computer-Integrated Manufacturing, 73, 102208. https://doi.org/10.1016/j.rcim.2021.102208
  Google Scholar

Hopko, S. K., & Mehta, R. K. (2022). Trust in shared-space collaborative robots: Shedding light on the human brain. Human Factors: The Journal of the Human Factors and Ergonomics Society, 66(2), 490-509. https://doi.org/10.1177/00187208221109039
  Google Scholar

Ibrahim, M. A., & Askar, S. (2023). An intelligent scheduling strategy in fog computing system based on multi-objective deep reinforcement learning algorithm. IEEE Access, 11, 133607-133622. https://doi.org/10.1109/ACCESS.2023.3337034
  Google Scholar

Javaid, M., Haleem, A., Singh, R. P., Rab, S., & Suman, R. (2022). Significant applications of cobots in the field of manufacturing. Cognitive Robotics, 2, 222-233. https://doi.org/10.1016/j.cogr.2022.10.001
  Google Scholar

Kakade, S., Patle, B., & Umbarkar, A. (2023). Applications of collaborative robots in agile manufacturing: a review. Robotic Systems and Applications, 3(1), 59-83. https://doi.org/10.21595/rsa.2023.23238
  Google Scholar

Li, X., Chen, W., & Alrasheedi, M. (2023). Challenges of the collaborative innovation system in public higher education in the era of industry 4.0 using an integrated framework. Journal of Innovation and Knowledge, 8(4), 100430. https://doi.org/10.1016/j.jik.2023.100430
  Google Scholar

Maniscalco, U., Minutolo, A., Storniolo, P., & Esposito, M. (2024). Towards a more anthropomorphic interaction with robots in museum settings: An experimental study. Robotics and Autonomous Systems, 171, 104561. https://doi.org/10.1016/j.robot.2023.104561
  Google Scholar

Mayr, M., Ahmad, F., Duerr, A., & Krueger, V. (2023). Using knowledge representation and task planning for robot-agnostic skills on the example of contact-rich wiping tasks. ArXiv, abs/2308.14206. https://doi.org/10.48550/arXiv.2308.14206
  Google Scholar

Michalos, G., Makris, S., Tsarouchi, P., Guasch, T., Kontovrakis, D., & Chryssolouris, G. (2015). Design considerations for safe human-robot collaborative workplaces. Procedia CIRP, 37, 248-253. https://doi.org/10.1016/j.procir.2015.08.014
  Google Scholar

Noor Hasnan, N. Z., & Yusoff, Y. M. (2018). Short review: Application areas of Industry 4.0 technologies in food processing sector. 2018 IEEE 16th Student Conference on Research and Development (SCOReD) (pp.1-6). IEEE. https://doi.org/10.1109/SCORED.2018.8711184
  Google Scholar

Othman, U., & Yang, E. (2023). Human-robot collaborations in smart manufacturing environments: Review and outlook †. Sensors, 23(12), 5663. https://doi.org/10.3390/s23125663
  Google Scholar

Pagani, R., Nuzzi, C., Ghidelli, M., Borboni, A., Lancini, M., & Legnani, G. (2021). Cobot user frame calibration: Evaluation and comparison between positioning repeatability performances achieved by traditional and vision-based methods. Robotics, 10(1), 45. https://doi.org/10.3390/robotics10010045
  Google Scholar

Park, J., Kim, T., Gu, C., Kang, Y., & Cheong, J. (2024). Dynamic collision estimator for collaborative robots: A dynamic Bayesian network with Markov model for highly reliable collision detection. Robotics and Computer-Integrated Manufacturing, 86, 102692. https://doi.org/10.1016/j.rcim.2023.102692
  Google Scholar

Prati, E., Peruzzini, M., Pellicciari, M., & Raffaeli, R. (2021). How to include user experience in the design of human-robot interaction. Robotics and Computer-Integrated Manufacturing, 68, 102072. https://doi.org/10.1016/j.rcim.2020.102072
  Google Scholar

Rahman, M. S., Ghosh, T., Aurna, N. F., Kaiser, M. S., Anannya, M., & Hosen, A. S. M. S. (2023). Machine learning and internet of things in industry 4.0: A review. Measurement: Sensors, 28, 100822. https://doi.org/10.1016/j.measen.2023.100822
  Google Scholar

Ribeiro, J., Lima, R., Eckhardt, T., & Paiva, S. (2021). Robotic process automation and artificial intelligence in Industry 4.0 - A literature review. Procedia Computer Science, 181, 51-58. https://doi.org/10.1016/j.procs.2021.01.104
  Google Scholar

Segura, P., Lobato-Calleros, O., Ramírez-Serrano, A., & Soria, I. (2021). Human-robot collaborative systems: Structural components for current manufacturing applications. Advances in Industrial and Manufacturing Engineering, 3, 100060. https://doi.org/10.1016/j.aime.2021.100060
  Google Scholar

Sharma, I., Gupta, S. K., Mishra, A., & Askar, S. (2023). Synchronous federated learning based multi unmanned aerial vehicles for secure applications. Scalable Computing: Practice and Experiencet, 24(3), 191-201. https://doi.org/10.12694/scpe.v24i3.2136
  Google Scholar

Sherwani, F., Asad, M. M., & Ibrahim, B. S. K. K. (2020). Collaborative robots and Industrial Revolution 4.0 (IR 4.0). 2020 International Conference on Emerging Trends in Smart Technologies (ICETST) (pp. 1-5). IEEE. https://doi.org/10.1109/ICETST49965.2020.9080724
  Google Scholar

Silva, G., Rekik, K., Kanso, A., & Schnitman, L. (2022). Multi-perspective human robot interaction through an augmented video interface supported by deep learning. 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) (pp. 1168-1173). https://doi.org/10.1109/RO-MAN53752.2022.9900671
  Google Scholar

Tosello, E., Castaman, N., & Menegatti, E. (2019). Using robotics to train students for Industry 4.0. IFAC-PapersOnLine, 52(9), 153-158. https://doi.org/10.1016/j.ifacol.2019.08.185
  Google Scholar

Wang, S., Zhang, J., Wang, P., Law, J., Calinescu, R., & Mihaylova, L. (2024). A deep learning-enhanced Digital Twin framework for improving safety and reliability in human-robot collaborative manufacturing. Robotics and Computer-Integrated Manufacturing, 85, 102608. https://doi.org/10.1016/j.rcim.2023.102608
  Google Scholar

Zhang, R., Lv, Q., Li, J., Bao, J., Liu, T., & Liu, S. (2022). A reinforcement learning method for human-robot collaboration in assembly tasks. Robotics and Computer-Integrated Manufacturing, 73, 102227. https://doi.org/10.1016/j.rcim.2021.102227
  Google Scholar

Zhang, Y., Ding, K., Hui, J., Liu, S., Guo, W., & Wang, L. (2024). Skeleton-RGB integrated highly similar human action prediction in human-robot collaborative assembly. Robotics and Computer-Integrated Manufacturing, 86, 102659. https://doi.org/10.1016/j.rcim.2023.102659
  Google Scholar

Download


Published
2024-06-30

Cited by

ASAAD, H., ASKAR, S., KAKAMIN, A., & FAIQ, N. (2024). EXPLORING THE IMPACT OF ARTIFICIAL INTELLIGENCE ON HUMANROBOT COOPERATION IN THE CONTEXT OF INDUSTRY 4.0. Applied Computer Science, 20(2), 138–156. https://doi.org/10.35784/acs-2024-21

Authors

Hawkar ASAAD 
hawkar.mohammad@epu.edu.iq
Erbil Polytechnic University, Technical College of Engineering, Department of Information System Engineering Iraq
https://orcid.org/0009-0008-7010-0150

Authors

Shavan ASKAR 

Erbil Polytechnic University, Technical College of Engineering, Department of Information System Engineering Iraq
https://orcid.org/0000-0002-9279-8181

Authors

Ahmed KAKAMIN 

Iraq
https://orcid.org/0009-0002-0806-7923

Authors

Nayla FAIQ 

Iraq
https://orcid.org/0009-0002-4182-4199

Statistics

Abstract views: 35
PDF downloads: 7


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.