COMPUTER-AIDED MATERIAL DEMAND PLANNING USING ERP SYSTEMS AND BUSINESS INTELLIGENCE TECHNOLOGY
Article Sidebar
Open full text
Issue Vol. 16 No. 3 (2020)
-
A DEEP ENSEMBLE LEARNING METHOD FOR EFFORT-AWARE JUST-IN-TIME DEFECT PREDICTION
Saleh ALBAHLI5–15
-
IMPACT-BASED PIEZOELECTRIC ENERGY HARVESTING SYSTEM EXCITED FROM DIESEL ENGINE SUSPENSION
Jacek CABAN, Grzegorz LITAK, Bartłomiej AMBROŻKIEWICZ, Leszek GARDYŃSKI, Paweł STĄCZEK, Piotr WOLSZCZAK16-29
-
A SECURITY MODEL FOR PREVENTING E-COMMERCE RELATED CRIMES
Raphael Olufemi AKINYEDE, Sulaiman Omolade ADEGBENRO, Babatola Moses OMILODI30-41
-
COMPUTER-AIDED MATERIAL DEMAND PLANNING USING ERP SYSTEMS AND BUSINESS INTELLIGENCE TECHNOLOGY
Wojciech DANILCZUK, Arkadiusz GOLA42-55
-
A ROBUST ENSEMBLE MODEL FOR SPOKEN LANGUAGE RECOGNITION
Nancy WOODS, Gideon BABATUNDE56-68
-
INSTRUMENTAL COLOR MEASUREMENT OF MEAT AND MEAT PRODUCTS IN X-RITECOLOR® MASTER
Karolina FERYSIUK, Karolina M. WÓJCIAK, Paulina KĘSKA, Dariusz M. STASIAK69-79
-
CONVENTIONAL ENERGY EFFICIENT ROUTING PROTOCOLS IN WIRELESS SENSOR NETWORKS
Muaayed F. AL-RAWI80-87
-
NUMERICAL PREDICTION OF THE COMPONENT-RATIO-DEPENDENT COMPRESSIVE STRENGTH OF BONE CEMENT
Anna MACHROWSKA, Robert KARPIŃSKI, Józef JONAK, Jakub SZABELSKI88-101
Archives
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
-
Vol. 14 No. 4
2018-12-30 8
-
Vol. 14 No. 3
2018-09-30 8
-
Vol. 14 No. 2
2018-06-30 8
-
Vol. 14 No. 1
2018-03-30 7
Main Article Content
DOI
Authors
Abstract
Effective decision-making in industry conditions requires access and proper presentation of manufacturing data on the realised manufacturing process. Although the frequently applied ERP systems allow for recording economic events, their potential for decision support is limited. The article presents an original system for reporting manufacturing data based on Business Intelligence technology as a support for junior and middle management. As an example a possibility of utilising data from ERP systems to support decision-making in the field of purchases and logistics in small and medium enterprises.
Keywords:
References
Alsoub, R.K., Alrawashdeh, T.A., & Althunibat, A. (2018). User acceptance for Enterprise Resource Planning Software Systems. International Journal of Innovative Computing Information and Control, 14(1), 297–307. http://doi.org/10.24507/ijicic.14.01.297
Aremu, A.Y., Shahzad, A., & Hassan, S. (2019). The Empirical Evidence of Enterprise Resource Planning System Adoption and Implementation on Firm’s Performance Among Medium-sized Enterprises. Global Business Review, UNSP 0972150919849751. http://doi.org/10.1177/0972150919849751 DOI: https://doi.org/10.1177/0972150919849751
Bocewicz, G., Nielsen, I., & Banaszak, Z. (2016). Production Flows Scheduling Subject to Fuzzy Processing Time Constraints. International Journal of Computer Integrated Manufacturing, 29(10), 1105–1127. http://doi.org/10.1080/0951192X.2016.1145739 DOI: https://doi.org/10.1080/0951192X.2016.1145739
Chang, Y.W. (2020). What drives organizations to switch to cloud ERP systems? The impacts of enablers and inhibitors. Journal of Enterprise Information Management, 33(3), 600–626. http://doi.org/10.1108/JEIM-06-2019-0148 DOI: https://doi.org/10.1108/JEIM-06-2019-0148
Cieśla, B., & Gunia, G. (2019). Development of integrated management information systems in the context of Industry 4.0. Applied Computer Science, 15(4), 37–48. http://doi.org/10.23743/acs-2019-28
Danilczuk, W. (2019). Analiza danych produkcyjnych na podstawie transakcji w systemie ERP z wykorzystaniem technologii Business Intelligence. Autobusy – Technika, Eksploatacja, Systemy transportowe, 232(7/8), 62–65. http://doi.org/10.24136/attest.2019.192
De Oliveira, A., & De Almeida, J.R. (2019). Business Intelligence Application for Multidimensional Analysis Risks in Complex Projects. IT Professional, 21(6), 33–39. http://doi.org/10.1109/MITP.2018.2876931 DOI: https://doi.org/10.1109/MITP.2018.2876931
Djiroun, R., Boukhalfa, K., & Alimazighi, Z. (2019). Designing data cubes in OLAP systems: a decision makers’ requirements-based approach. Cluster Computing – The Journal of Networks Software Tools and Applications, 22(3), 783–803. http://doi.org/10.1007/s10586-018-2883-7 DOI: https://doi.org/10.1007/s10586-018-2883-7
George, A., Schmitz, K., & Storey, V.C. (2020). A Framework for Building Mature Business Intelligence and Analytics in Organizations. Journal of Database Management, 31(3), 14-39. http://doi.org/10.4018/JDM.2020070102 DOI: https://doi.org/10.4018/JDM.2020070102
Gola, A. (2014). Economic aspects of manufacturing systems design. Actual Problems of Economics, 156(6), 205–212.
GUS (2020, August 7). Wykorzystanie technologii informacyjno-komunikacyjnych w jednostkach administracji publicznej, przedsiębiorstwach i gospodarstwach domowych w 2019 roku. Retrieved from https://stat.gov.pl/obszary-tematyczne/naukai-technika-spoleczenstwo-informacyjne/spoleczenstwo-informacyjne/wykorzystanietechnologii-informacyjno-komunikacyjnych-w-jednostkach-administracjipublicznej-przedsiebiorstwach-i-gospodarstwach-domowych-w-2019-roku,3,18.html
Huang, S.Y., Chiu, A.A., Chao, P.C., & Arniati, A. (2019). Critical Success Factors in Implementing Enterprise Resource Planning Systems for Sustainable Corporations. Sustainability, 11(23), 6785. http://doi.org/10.3390/su11236785 DOI: https://doi.org/10.3390/su11236785
Januszewski, A. (2008). Funkcjonalność informatycznych systemów zarządzania: Tom 1 Zintegrowane systemy transakcyjne. Wydawnictwo Naukowe PWN.
Loudcher, S., Jakawat, W., Soriano Morales, E.P., & Favre, C. (2015). Combining OLAP and information networks for bibliographic data analysis: a survey. Scientometrics, 103, 471–487. http://doi.org/10.1007/s11192-015-1539-0 DOI: https://doi.org/10.1007/s11192-015-1539-0
Meilin, W., Xiangwei, Z., & Qingyun, D. (2010). An Integration Methodology Based on SOA to Enable Real-Time Closed-Loop MRP between MES and ERP. 2010 International Conference on Computing, Control and Industrial Engineering, 1, 101–105. http://doi.org/10.1109/CCIE.2010.33 DOI: https://doi.org/10.1109/CCIE.2010.33
Patalas-Maliszewska, J. (2012). Assessing the Impact of ERP Implementation in the Small Enterprises. Foundations of Management, 4(2), 51–62. http://doi.org/10.2478/fman2013-0010 DOI: https://doi.org/10.2478/fman-2013-0010
Queiroz-Sousa, P.O., & Salgado, A.C. (2020). A review on OLAP Technologies Applied to Information Networks. ACM Transactions on Knowledge Discovery from Data, 14(1), 8. http://doi.org/10.1145/3370912 DOI: https://doi.org/10.1145/3370912
Rodriguez, R., Molina-Castillo, F.J., & Svensson, G. (2020). Enterprise resource planning and business model innovation: process, evolution and outcome. European Journal of Innovation Management, 23(4), 728–752. http://doi.org/10.1108/IJIM-04-2019-0092 DOI: https://doi.org/10.1108/EJIM-04-2019-0092
Sobaszek, Ł., Gola, A., & Kozłowski, E. (2018). Job-shop scheduling with machine breakdown prediction under completion time constraint. Annals of Computer Science and Information Systems, 15, 437–440. http://doi.org/10.15439/2018F83 DOI: https://doi.org/10.15439/2018F83
Sobaszek, Ł., Gola, A., & Świć, A. (2020). Time-based machine failure prediction in multimachine manufacturing systems. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 22(1), 52–62. http://doi.org/10.17531/ein.2020.1.7 DOI: https://doi.org/10.17531/ein.2020.1.7
Świć, A., & Gola, A. (2013). Economic analysis of casing parts production in a flexible manufacturing system. Actual Problems of Economics, 141(3), 526–533.
Terkaj, W., Tolio, T., & Urgo, M. (2015). A virtual factory approach for in situ simulation to support production and maintenance planning. CIRP Annals Manufacturing Technology, 64(1), 451–454. http://doi.org/10.1016/j.cirp.2015.04.121 DOI: https://doi.org/10.1016/j.cirp.2015.04.121
Vargas, M.A., & Comuzzi, M. (2020). A multi-dimensional model of Enterprise Resource Planning critical successes factors. Enterprise Information Systems, 14(1), 38–57. http://doi.org/10.1080/17517575.2019.1678072 DOI: https://doi.org/10.1080/17517575.2019.1678072
Waters, D. (1996). Operations Mangement: Producing Goods and Services. Addison Wesley Longman Limited.
Yiu, L.M.D., Yeung, A.C.L., & Jong, A.P.L. (2020). Business intelligence systems and operational capability: an empirical analysis of high-tech sectors. Industrial Management & Data Systems, 120(6), 1195–1215. http://doi.org/10.1108/IMDS12-2019-0659 DOI: https://doi.org/10.1108/IMDS-12-2019-0659
Zwolińska, B., Grzybowska, K., & Kubica, Ł. (2017). Shaping production change variability in relation to the utilized technology. 24th International Conference on Production Research, ICPR 2017, 155812, 51–56.
Article Details
Abstract views: 836
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
