SEMANTIC SEGMENTATION OF ALGAL BLOOMS ON THE OCEAN SURFACE USING SENTINEL 3 CHL_NN BAND IMAGERY
Venkatesh BHANDAGE
venkatesh.bhandage@manipal.eduManipal Institute of Technology MAHE Manipal (India)
https://orcid.org/0000-0002-9503-8196
Manohara PAI M. M.
Manipal Institute of Technology MAHE Manipal (India)
https://orcid.org/0000-0003-2164-2945
Abstract
Satellite imagery plays an important role in detecting algal blooms because of its ability to cover larger geographical regions. Excess growth of Sea surface algae, characterized by the presence of Chlorophyll-a (Chl-a), is considered to be harmful. The detection of algal growth at an earlier stage may prevent hazardous effects on the aquatic environment. Semantic segmentation of algal blooms is helpful in the quantization of algal blooms. A rule-based semantic segmentation approach for the segregation of sea surface algal blooms is proposed. Bloom concentrations are classified into three different concentrations, namely, low, medium, and high. The chl_nn band in the Sentinel-3 satellite images is used for experimentation. The chl_nn band has exclusive details of the presence of chlorophyll concentrations. A dataset is proposed for the semantic segmentation of algal blooms. The devised rule-based semantic segmentation approach has produced an average accuracy of 98%. A set of 100 images is randomly selected for testing. The tests are repeated on 5 different image sets. The results are validated by the pixel comparison method. The proposed work is compared with other relevant works. The Arabian Sea near the coastal districts of Udupi and Mangaluru has been considered as the area of study. The methodology can be adapted to monitor the life cycle of blooms and their hazardous effects on aquatic life.
Keywords:
Sentinel-3, algal bloom, remote sensing, chlorophyll-a, semantic segmentation, rule-based classifierReferences
Al-Nawashi, M. M., Al-Hazaimeh, O. M., & Khazaaleh, M. Kh. (2024). New approach for breast cancer detection based on machine learning techniques. Applied Computer Science, 20(1), 1-16. https://doi.org/10.35784/acs-2024-01
DOI: https://doi.org/10.35784/acs-2024-01
Google Scholar
Anilkumar, P., & Venugopal, P. (2022). Research contribution and comprehensive review towards the semantic segmentation of aerial images using Deep Learning techniques. Security and Communication Networks, 2022(1), 6010912. https://doi.org/10.1155/2022/6010912
DOI: https://doi.org/10.1155/2022/6010912
Google Scholar
Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481-2495. https://doi.org/10.1109/TPAMI.2016.2644615
DOI: https://doi.org/10.1109/TPAMI.2016.2644615
Google Scholar
Baran, K. (2024). Application of thermal imaging cameras for smartphone: Seek Thermal Compact Pro and FLIR One Pro for human stress detection – Comparison and study. Applied Computer Science, 20(1), 122–138. https://doi.org/10.35784/acs-2024-08
DOI: https://doi.org/10.35784/acs-2024-08
Google Scholar
Cui, B., Zhang, H., Jing, W., Liu, H., and Cui, J. (2022). SRSe-Net: Super-Resolution-Based semantic segmentation network for green tide extraction. Remote Sensing. 14(3), 710. https://doi.org/10.3390/rs14030710
DOI: https://doi.org/10.3390/rs14030710
Google Scholar
Elbahri, M., Taleb, N., Ardjoun, S. A. E. M., & Zouaoui, C. M. A. (2024). Few-shot learning with pre-trained layers integration applied to hand gesture recognition for disabled people. Applied Computer Science, 20(2), 1-23. https://doi.org/10.35784/acs-2024-13
DOI: https://doi.org/10.35784/acs-2024-13
Google Scholar
EUMETSAT. (2024). OLCI Level-2 Water Full Resolution. http://coda.eumetsat.int/#/home
Google Scholar
Fernández-Tejedor, M., Velasco, J. E., & Angelats, E. (2022). Accurate estimation of chlorophyll-a concentration in the coastal areas of the ebro delta (NW Mediterranean) using Sentinel-2 and its application in the selection of areas for mussel aquaculture. Remote Sensing, 14(20), 5235. https://doi.org/10.3390/rs14205235
DOI: https://doi.org/10.3390/rs14205235
Google Scholar
Fogg, G. E. (2022). Harmful algae - A perspective. Harmful Algae, 1(1), 1-4. https://doi.org/10.1016/S1568-9883(02)00002-1
DOI: https://doi.org/10.1016/S1568-9883(02)00002-1
Google Scholar
Girisha, S., Pai, M. M. M., Verma, U., & Pai, R. M. (2021a). Semantic segmentation with enhanced temporal smoothness using CRF in aerial videos. IEEE Madras Section Conference (MASCON) (pp. 1-5). IEEE. https://doi.org/10.1109/MASCON51689.2021.9563599
DOI: https://doi.org/10.1109/MASCON51689.2021.9563599
Google Scholar
Girisha, S., Verma, U., Manohara Pai, M. M., & Pai., R. M. (2021b). UVid-Net: Enhanced semantic segmentation of UAV aerial videos by embedding temporal information. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 4115-4127. https://doi.org/10.1109/JSTARS.2021.3069909
DOI: https://doi.org/10.1109/JSTARS.2021.3069909
Google Scholar
Haji Gholizadeh, M., Melesse, A. M., & Reddi, L. (2016). Spaceborne and airborne sensors in water quality assessment. International Journal of Remote Sensing, 37(14), 3143-3180. https://doi.org/10.1080/01431161.2016.1190477
DOI: https://doi.org/10.1080/01431161.2016.1190477
Google Scholar
Ho, J. C., Michalak, A. M., & Pahlevan, N. (2019). Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature, 574, 667-670. https://doi.org/10.1038/s41586-019-1648-7
DOI: https://doi.org/10.1038/s41586-019-1648-7
Google Scholar
Jaiganesh, S. N. N., Sarangi, R. K., & Shukla, S. (2021). Satellite-based observation of ocean productivity in southeast Arabian Sea using chlorophyll, sea surface temperature and wind datasets. Journal of Earth System Science, 130, 5. https://doi.org/10.1007/s12040-020-01512-y
DOI: https://doi.org/10.1007/s12040-020-01512-y
Google Scholar
Kamath, R., Balachandra, M., Vardhan, A., & Maheshwari, U. (2022). Classification of paddy crop and weeds using semantic segmentation. Cogent Engineering, 9(1), 2018791. https://doi.org/10.1080/23311916.2021.2018791
DOI: https://doi.org/10.1080/23311916.2021.2018791
Google Scholar
Kinane Daouadji, A., & Bendella, F. (2024). Improving e-learning by facial expression analysis. Applied Computer Science, 20(2), 126-137. https://doi.org/10.35784/acs-2024-20
DOI: https://doi.org/10.35784/acs-2024-20
Google Scholar
Kotaridis, I., & Lazaridou, M. (2022). Semantic segmentation using a UNet architecture on Sentinel-2 data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2022, 119-126. https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-119-2022
DOI: https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-119-2022
Google Scholar
Kutser, T. (2009). Passive optical remote sensing of cyanobacteria and other Intense phytoplankton blooms in coastal and inland waters. International Journal of Remote Sensing, 30(17), 4401-4425. https://doi.org/10.1080/01431160802562305
DOI: https://doi.org/10.1080/01431160802562305
Google Scholar
Li, Z., & Demir, I. (2023). U-net-based semantic classification for flood extent extraction using SAR imagery and GEE platform: A case study for 2019 central US flooding. Science of the Total Environment, 869, 161757. https://doi.org/10.1016/j.scitotenv.2023.161757
DOI: https://doi.org/10.1016/j.scitotenv.2023.161757
Google Scholar
Lilay, M. Y., & Taye, G. D. (2023). Semantic segmentation model for land cover classification from satellite images in Gambella National Park, Ethiopia. SN Applied Sciences, 5, 76. https://doi.org/10.1007/s42452-023-05280-4
DOI: https://doi.org/10.1007/s42452-023-05280-4
Google Scholar
Ma, J., Zhou, W., Lei, J., & Yu, L. (2023). Adjacent bi-hierarchical network for scene parsing of remote sensing images. IEEE Geoscience and Remote Sensing Letters, 20, 3000705. https://doi.org/10.1109/LGRS.2023.3241648
DOI: https://doi.org/10.1109/LGRS.2023.3241648
Google Scholar
Maiyanti, S. I., Desiani, A., Lamin, S., Puspitashati., Arhami, M., Gofar, N., & Cahyana, D. (2023) Rotation-gamma correction augmentation on CNN-dense block for soil image classification. Applied Computer Science, 19(3), 96-115. https://doi.org/10.35784/acs-2023-27
DOI: https://doi.org/10.35784/acs-2023-27
Google Scholar
Makhlouf, Z., Meraoumia, A., Lakhdar, L., & Haouam, M. Y. (2024). Enhancing medical data security in e-health systems using biometric-based watermarking. Applied Computer Science, 20(1), 28-55. https://doi.org/10.35784/acs-2024-03
DOI: https://doi.org/10.35784/acs-2024-03
Google Scholar
Nallapareddy, A., (2022). Detection and classification of vegetation areas from red and near infrared bands of Landsat-8 optical satellite image. Applied Computer Science, 18(1), 45-55. https://doi.org/10.35784/acs-2022-4
DOI: https://doi.org/10.35784/acs-2022-4
Google Scholar
Nayak, R. K., Swapna, M., Manche, S. S., Mohanty, P. C., Sheshasai, M. V. R., Dadhwal, V. K., & Kumar, R. (2023). Assessment of chlorophyll-a seasonal cycle in the North Indian Ocean using observations from OCM2, MODIS, and SeaWiFS. Journal of the Indian Society of Remote Sensing, 51, 229-246. https://doi.org/10.1007/s12524-022-01642-4
DOI: https://doi.org/10.1007/s12524-022-01642-4
Google Scholar
Ogashawara, I. (2019). The use of Sentinel-3 imagery to monitor cyanobacterial blooms. Environments, 6(6), 60. https://doi.org/10.3390/environments6060060
DOI: https://doi.org/10.3390/environments6060060
Google Scholar
Randolph, K., Wilson, J., Tedesco, L., Li, L., Pascual, D. L., & Soyeux, E. (2008) Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin. Remote Sensing of Environment, 112(11), 4009-4019. https://doi.org/10.1016/j.rse.2008.06.002
DOI: https://doi.org/10.1016/j.rse.2008.06.002
Google Scholar
Ravishankar, T., Anil, T. C., Verma, U., Pai, M. M. M., & Pai. R. (2022). MartiNet: An efficient approach for river segmentation in SAR images. IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT) (pp. 1-6). IEEE. https://doi.org/10.1109/CONECCT55679.2022.9865830
DOI: https://doi.org/10.1109/CONECCT55679.2022.9865830
Google Scholar
Rodríguez-Benito, C. V., Navarro, G., & Caballero, I. (2020). Using Copernicus Sentinel-2 and Sentinel-3 data to monitor harmful algal blooms in Southern Chile during the COVID-19 lockdown. Marine Pollution Bulletin, 161(Part A), 111722. https://doi.org/10.1016/j.marpolbul.2020.111722
DOI: https://doi.org/10.1016/j.marpolbul.2020.111722
Google Scholar
Roelke, D., & Buyukates, Y. (2001). The Diversity of harmful algal bloom-triggering mechanisms and the complexity of bloom initiation. Human and Ecological Risk Assessment: An International Journal, 7(5), 1347-1362. https://doi.org/10.1080/20018091095041
DOI: https://doi.org/10.1080/20018091095041
Google Scholar
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Seg-mentation. In N. Navab, J. Hornegger, W. M. Wells, & A. F. Frangi (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (Vol. 9351, pp. 234–241). Springer International Publishing. https://doi.org/10.1007/978-3-319-24574-4_28
DOI: https://doi.org/10.1007/978-3-319-24574-4_28
Google Scholar
Shelhamer, E., Long, J., & Darrell, T. (2017). Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 640-651. https://doi.org/10.1109/TPAMI.2016.2572683
DOI: https://doi.org/10.1109/TPAMI.2016.2572683
Google Scholar
Singh, N. J., & Nongmeikapam, K. (2023). Semantic segmentation of satellite images using Deep-Unet. Arabian Journal for Science and Engineering, 48, 1193–1205. https://doi.org/10.1007/s13369-022-06734-4
DOI: https://doi.org/10.1007/s13369-022-06734-4
Google Scholar
Srichandan, S., Baliarsingh, S. K., Samanta, A. Jena, A. K., Lotliker, A. A., Nair, T. M. B., Barik, K. K., & Acharyya, T. (2022). Satellite-based characterization of phytoplankton blooms in coastal waters of the northwestern bay of bengal. Journal of the Indian Society of Remote Sensing, 50, 2221-2228. https://doi.org/10.1007/s12524-022-01597-6
DOI: https://doi.org/10.1007/s12524-022-01597-6
Google Scholar
Tendolkar, A., Choraria, M. M., Manohara Pai, S., Girisha, G., Dsouza & Adithya, K. S. (2021). Modified crop health monitoring and pesticide spraying system using NDVI and Semantic Segmentation: An AGROCOPTER based approach. IEEE International Conference on Autonomous Systems (ICAS) (pp. 1-5). IEEE. https://doi.org/10.1109/ICAS49788.2021.9551116
DOI: https://doi.org/10.1109/ICAS49788.2021.9551116
Google Scholar
Tholkapiyan, M., Shanmugam, P., & Suresh, T. (2014). Monitoring of ocean surface algal blooms in coastal and oceanic waters around India. Environmental Monitoring and Assessment, 186, 4129–4137. https://doi.org/10.1007/s10661-014-3685-x
DOI: https://doi.org/10.1007/s10661-014-3685-x
Google Scholar
Vase, V. K., Ajay, N., Kumar, R. Jayaraman, J., & Rohit, P. (2022). Evaluation of satellite sensors to compute Chlorophyll-a concentration in the Northeastern Arabian Sea: A validation approach. Journal of the Indian Society of Remote Sensing, 50, 2209-2220. https://doi.org/10.1007/s12524-022-01598-5
DOI: https://doi.org/10.1007/s12524-022-01598-5
Google Scholar
Verma, U., Chauhan, A., Manohara, M.P., & Pai, R. (2021). DeepRivWidth: Deep Learning based semantic segmentation approach for river identification and width measurement in SAR images of coastal Karnataka. Computers & Geosciences, 154, 104805. https://doi.org/10.1016/j.cageo.2021.104805
DOI: https://doi.org/10.1016/j.cageo.2021.104805
Google Scholar
Wang, Z., Zhang, S., Zhang, C., & Wang, B. (2023). Hidden feature-guided semantic segmentation network for remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-17, 5603417. https://doi.org/10.1109/TGRS.2023.3244273
DOI: https://doi.org/10.1109/TGRS.2023.3244273
Google Scholar
Yang, N., & Tang, H. (2021). Semantic segmentation of satellite images: A Deep Learning approach integrated with geospatial hash codes. Remote Sensing, 13(14), 2723. https://doi.org/10.3390/rs13142723
DOI: https://doi.org/10.3390/rs13142723
Google Scholar
Zhu, S., Wu, Y., & Ma, X. (2023). Deep Learning-based algal bloom identification method from remote sensing images - Take China’s Chaohu Lake as an example. Sustainability, 15(5), 4545. https://doi.org/10.3390/su15054545
DOI: https://doi.org/10.3390/su15054545
Google Scholar
Authors
Venkatesh BHANDAGEvenkatesh.bhandage@manipal.edu
Manipal Institute of Technology MAHE Manipal India
https://orcid.org/0000-0002-9503-8196
Authors
Manohara PAI M. M.Manipal Institute of Technology MAHE Manipal India
https://orcid.org/0000-0003-2164-2945
Statistics
Abstract views: 88PDF downloads: 43
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Similar Articles
- Anusha NALLAPAREDDY, DETECTION AND CLASSIFICATION OF VEGETATION AREAS FROM RED AND NEAR INFRARED BANDS OF LANDSAT-8 OPTICAL SATELLITE IMAGE , Applied Computer Science: Vol. 18 No. 1 (2022)
- Esraa Alaa MAHAREEK, Doaa Rizk FATHY, Eman Karm ELSAYED, Nahed ELDESOUKY, Kamal Abdelraouf ELDAHSHAN, VIOLENCE PREDICTION IN SURVEILLANCE VIDEOS , Applied Computer Science: Vol. 20 No. 3 (2024)
- Mohamed ELBAHRI, Nasreddine TALEB, Sid Ahmed El Mehdi ARDJOUN, Chakib Mustapha Anouar ZOUAOUI , FEW-SHOT LEARNING WITH PRE-TRAINED LAYERS INTEGRATION APPLIED TO HAND GESTURE RECOGNITION FOR DISABLED PEOPLE , Applied Computer Science: Vol. 20 No. 2 (2024)
- Robert KARPIŃSKI, KNEE JOINT OSTEOARTHRITIS DIAGNOSIS BASED ON SELECTED ACOUSTIC SIGNAL DISCRIMINANTS USING MACHINE LEARNING , Applied Computer Science: Vol. 18 No. 2 (2022)
- Nataliya SHABLIY, Serhii LUPENKO, Nadiia LUTSYK, Oleh YASNIY, Olha MALYSHEVSKA, KEYSTROKE DYNAMICS ANALYSIS USING MACHINE LEARNING METHODS , Applied Computer Science: Vol. 17 No. 4 (2021)
- Konrad BIERCEWICZ, Mariusz BORAWSKI, Anna BORAWSKA, Jarosław DUDA, DETERMINING THE DEGREE OF PLAYER ENGAGEMENT IN A COMPUTER GAME WITH ELEMENTS OF A SOCIAL CAMPAIGN USING COGNITIVE NEUROSCIENCE TECHNIQUES , Applied Computer Science: Vol. 18 No. 4 (2022)
- Sri INDRA MAIYANTI, Anita DESIANI, Syafrina LAMIN, P PUSPITAHATI, Muhammad ARHAMI, Nuni GOFAR, Destika CAHYANA, ROTATION-GAMMA CORRECTION AUGMENTATION ON CNN-DENSE BLOCK FOR SOIL IMAGE CLASSIFICATION , Applied Computer Science: Vol. 19 No. 3 (2023)
- Mahmoud BAKR, Sayed ABDEL-GABER, Mona NASR, Maryam HAZMAN, TOMATO DISEASE DETECTION MODEL BASED ON DENSENET AND TRANSFER LEARNING , Applied Computer Science: Vol. 18 No. 2 (2022)
- Sahar ZAMANI KHANGHAH, Keivan MAGHOOLI, EMOTION RECOGNITION FROM HEART RATE VARIABILITY WITH A HYBRID SYSTEM COMBINED HIDDEN MARKOV MODEL AND POINCARE PLOT , Applied Computer Science: Vol. 20 No. 1 (2024)
- Wulan Dewi, Wiranto Herry Utomo, PLANT CLASSIFICATION BASED ON LEAF EDGES AND LEAF MORPHOLOGICAL VEINS USING WAVELET CONVOLUTIONAL NEURAL NETWORK , Applied Computer Science: Vol. 17 No. 1 (2021)
You may also start an advanced similarity search for this article.