NOVEL MULTI-MODAL OBSTRUCTION MODULE FOR DIABETES MELLITUS CLASSIFICATION USING EXPLAINABLE MACHINE LEARNING

Reehana SHAIK

skreehana.15@gmail.com
VIT-AP UNIVERSITY (India)
https://orcid.org/0000-0002-2189-3616

Ibrahim SIDDIQUE


VIT AP UNIVERSITY (India)
https://orcid.org/0000-0003-3310-6090

Abstract

Diabetes Mellitus (DM) is a persistent metabolic disorder which is characterized by increased blood glucose level in the blood stream. Initially, DM occurs while the insulin secretion in the pancreas has a disability to secrete or to use hormone for the metabolic process. Moreover, there are different types of DM depending on the physiological process, and the types include Type1 DM, Type2 DM and Gestational DM. Electrocardiography (ECG) waves are used to detect the abnormal heartbeats and cannot directly detect DM, but the wave abnormality can indicate the possibility and presence of DM. Whereas the Photoplethysmography (PPG) signals are a non-invasive method used to detect changes in  blood volume that can monitor BG changes. Furthermore, the detection and classification of DM using PPG and ECG can involve analyzing the functional performance of these modalities. By extracting the features like R wave (W1) and QRS complex (W2) in the ECG signals and Pulse Width (S1) and Pulse Amplitude Variation (S2) can detect DM and can be classified into DM and Non-DM. The authors propose a Novel architecture in the basis of Encoder Decoder structure named as Obstructive Encoder Decoder module. This module extracts the specific features and the proposed novel Obstructive Erasing Module remove the remaining artifacts and then the extracted features are fed into the Multi-Uni-Net for the fusion of the two modalities and the fused image is classified using EXplainable Machine Learning (EX-ML). From this classification the performance metrics like Accuracy, Precision, Recall, F1-Score and AUC can be determined.


Keywords:

Diabetes Mellitus, Electrocardiogram (ECG), Non-Invasive method, Photoplethysmography, Feature Extraction, Explainable ML

Ahamed, A. K. A., Lalitha, K., Saravanan, S., & Muthu Kumar, S. (2023). Enhanced Deep Learning based non-invasive anomaly detection of ECG signals with emphasis on diabetes. International Journal of Intelligent Systems and Applications in Engineering, 11(6s), 284-294.
  Google Scholar

Cordeiro, R., Karimian, N., & Park, Y. (2021). Hyperglycemia identification using ECG in Deep Learning era. Sensors, 21(18), 6263. https://doi.org/10.3390/s21186263
  Google Scholar

Dave, D., Vyas, K., Branan, K., McKay, S., DeSalvo, D. J., Gutierrez-Osuna, R., Cote, G. L., & Erraguntla, M. (2024). Detection of hypoglycemia and hyperglycemia using noninvasive wearable sensors: Electrocardiograms and accelerometry. Journal of Diabetes Science and Technology, 18(2), 351–362. https://doi.org/10.1177/19322968221116393
  Google Scholar

Gupta, S., Singh, A., Sharma, A., & Tripathy, R. K. (2022). dSVRI: A PPG-based novel feature for early diagnosis of type-II diabetes mellitus. IEEE Sensors Letters, 6(9), 1-4. https://doi.org/10.1109/LSENS.2022.3203609
  Google Scholar

Hina, A., & Saadeh, W. (2022). A 186μW photoplethysmography-based noninvasive glucose sensing SoC. IEEE Sensors Journal, 22(14), 14185-14195. https://doi.org/10.1109/JSEN.2022.3180893
  Google Scholar

Jain, A., Verma, A., & Verma, A. K. (2023). Non-invasive and automatic identification of diabetes using ECG signals. International Journal of Electrical and Electronics Research, 11(2), 418-425. https://doi.org/10.37391/ijeer.110223
  Google Scholar

Khan, M., Kumar Singh, B., & Nirala, N. (2023). Expert diagnostic system for detection of hypertension and diabetes mellitus using discrete wavelet decomposition of photoplethysmogram signal and machine learning technique. Medicine in Novel Technology and Devices, 19, 100251. https://doi.org/10.1016/j.medntd.2023.100251
  Google Scholar

Kulkarni, A. R., Patel, A. A., Pipal, K. V., Jaiswal, S. G., Jaisinghani, M. T., Thulkar, V., Gajbhiye, L., Gondane, P., Patel, A. B., Mamtani, M., & Kulkarni, H. (2023). Machine-Learning algorithm to non-invasively detect diabetes and pre-diabetes from electrocardiogram. BMJ Innovations, 9(1), 32-42. https://doi.org/10.1136/bmjinnov-2021-000759
  Google Scholar

Lee, P.-L., Wang, K.-W., & Hsiao, C.-Y. (2023). A noninvasive blood glucose estimation system using dual-channel PPGs and pulse-arrival velocity. IEEE Sensors Journal, 23(19), 23570-23582. https://doi.org/10.1109/JSEN.2023.3306343
  Google Scholar

Li, J., Ma, J., Omisore, O. M., Liu, Y., Tang, H., Ao, P., Yan, Y., Wang, L., & Nie, Z. (2024). Noninvasive blood glucose monitoring using spatiotemporal ECG and PPG feature fusion and weight-based choquet Integral multimodel approach. IEEE Transactions on Neural Networks and Learning Systems, 35(10), 14491-14505. https://doi.org/10.1109/TNNLS.2023.3279383
  Google Scholar

Li, J., Tobore, I., Liu, Y., Kandwal, A., Wang, L., & Nie, Z. (2021). Non-invasive monitoring of three glucose ranges based on ECG by using DBSCAN-CNN. IEEE Journal of Biomedical and Health Informatics, 25(9), 3340-3350. https://doi.org/10.1109/JBHI.2021.3072628
  Google Scholar

Mishra, B., & Nirala, N. (2023). Type2 diabetes classification from short photoplethysmogram signal using multiple domain features and Machine Learning techniques. Research on Biomedical Engineering, 39(3), 541-560. https://doi.org/10.1007/s42600-023-00287-7
  Google Scholar

Mishra, B., Nirala, N., & Singh, B. K. (2024). Type-2 diabetes identification from toe-photoplethysmography using Fourier decomposition method. Neural Computing and Applications, 36(5), 2429-2443. https://doi.org/10.1007/s00521-023-09208-2
  Google Scholar

Navaneethakrishna, M., & Manuskandan, S. R. (2021). Analysis of heart rate variability in normal and diabetic ECG signals using fragmentation approach. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 1112-1115). IEEE. https://doi.org/10.1109/EMBC46164.2021.9631076
  Google Scholar

Pal, P., & Mahadevappa, M. (2023). Adaptive multidimensional dual attentive DCNN for detecting cardiac morbidities using fused ECG-PPG signals. IEEE Transactions on Artificial Intelligence, 4(5), 1225-1235. https://doi.org/10.1109/TAI.2022.3184656
  Google Scholar

Prabha, A., Yadav, J., Rani, A., & Singh, V. (2021). Design of intelligent diabetes mellitus detection system using hybrid feature selection based XGBoost classifier. Computers in Biology and Medicine, 136, 104664. https://doi.org/10.1016/j.compbiomed.2021.104664
  Google Scholar

Prabha, A., Yadav, J., Rani, A., & Singh, V. (2022). Intelligent estimation of blood glucose level using wristband PPG signal and physiological parameters. Biomedical Signal Processing and Control, 78, 103876. https://doi.org/10.1016/j.bspc.2022.103876
  Google Scholar

Sathish, D., Poojary, S. S., Shetty, S., Acharya, P. H., & Kabekody, S. (2024). Non-invasive diabetes detection system using photoplethysmogram signals. In S. Tiwari, M. C. Trivedi, M. L. Kolhe, & B. K. Singh (Eds.), Advances in Data and Information Sciences (Vol. 796, pp. 457–467). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-6906-7_39
  Google Scholar

Sen Gupta, S., Kwon, T.-H., Hossain, S., & Kim, K.-D. (2021). Towards non-invasive blood glucose measurement using machine learning: An all-purpose PPG system design. Biomedical Signal Processing and Control, 68, 102706. https://doi.org/10.1016/j.bspc.2021.102706
  Google Scholar

Shaan, B., Prabha, A., & Yadav, J. (2023). Pulse decomposition analysis based non-invasive diabetes detection system. In S. M. Thampi, J. Mukhopadhyay, M. Paprzycki, & K.-C. Li (Eds.), International Symposium on Intelligent Informatics (Vol. 333, pp. 291-302). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-8094-7_22
  Google Scholar

Shaan, B., Yadav, J., & Prabha, A. (2022). ML based non-invasive diabetes detection system using pulse decomposition analysis of PPG signal. 2022 8th International Conference on Signal Processing and Communication (ICSC) (pp. 417-422). IEEE. https://doi.org/10.1109/ICSC56524.2022.10009195
  Google Scholar

Shashikant, R., Chaskar, U., Phadke, L., & Patil, C. (2021). Gaussian process-based kernel as a diagnostic model for prediction of type 2 diabetes mellitus risk using non-linear heart rate variability features. Biomedical Engineering Letters, 11(3), 273-286. https://doi.org/10.1007/s13534-021-00196-7
  Google Scholar

Singha, S. K., & Ahmad, M. (2021). Noninvasive heart rate and blood glucose level estimation using photoplethysmography. 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD) (pp. 151-155). IEEE. https://doi.org/10.1109/ICICT4SD50815.2021.9396849
  Google Scholar

Srinivasan, V. B., & Foroozan, F. (2021). Deep Learning based non-invasive diabetes predictor using Photoplethysmography signals. 2021 29th European Signal Processing Conference (EUSIPCO) (pp. 1256-1260). IEEE. https://doi.org/10.23919/EUSIPCO54536.2021.9616351
  Google Scholar

Susana, E., Ramli, K., Murfi, H., & Apriantoro, N. H. (2022). Non-invasive classification of blood glucose level for early detection diabetes based on photoplethysmography signal. Information, 13(2), 59. https://doi.org/10.3390/info13020059
  Google Scholar

Susana, E., Ramli, K., Purnamasari, P. D., & Apriantoro, N. H. (2023). Non-invasive classification of blood glucose level based on photoplethysmography using time-frequency analysis. Information, 14(3), 145. https://doi.org/10.3390/info14030145
  Google Scholar

Zanelli, S., Yacoubi, M. A. E., Hallab, M., & Ammi, M. (2023). Type 2 diabetes detection with light CNN from single raw PPG wave. IEEE Access, 11, 57652-57665. https://doi.org/10.1109/ACCESS.2023.3274484
  Google Scholar

Download


Published
2024-12-31

Cited by

SHAIK, R., & SIDDIQUE , I. (2024). NOVEL MULTI-MODAL OBSTRUCTION MODULE FOR DIABETES MELLITUS CLASSIFICATION USING EXPLAINABLE MACHINE LEARNING. Applied Computer Science, 20(4), 39–62. https://doi.org/10.35784/acs-2024-39

Authors

Reehana SHAIK 
skreehana.15@gmail.com
VIT-AP UNIVERSITY India
https://orcid.org/0000-0002-2189-3616

Authors

Ibrahim SIDDIQUE  

VIT AP UNIVERSITY India
https://orcid.org/0000-0003-3310-6090

Statistics

Abstract views: 65
PDF downloads: 22


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

<< < 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.