FREQUENCY DEPENDENCE OF THE MAGNETOELECTRIC VOLTAGE COEFFICIENT IN (BiFeO3)x-(BaTiO3)1-x CERAMICS
Article Sidebar
Open full text
Issue Vol. 5 No. 4 (2015)
-
DEPARTMENT OF ELECTRICAL, CONTROL AND COMPUTER ENGINEERING, OPOLE UNIVERSITY OF TECHNOLOGY – DEVELOPMENT AND NEW CHALLENGES
Marian Łukaniszyn, Jan Sadecki3-6
-
THE FUZZY SYSTEM FOR RECOGNITION AND CONTROL OF THE TWO PHASE GAS-LIQUID FLOWS
Paweł Fiderek, Radosław Wajman, Jacek Kucharski7-11
-
FUZZY CLUSTERING OF RAW THREE DIMENSIONAL TOMOGRAPHIC DATA FOR TWO-PHASE FLOWS RECOGNITION
Paweł Fiderek, Tomasz Jaworski, Radosław Wajman, Jacek Kucharski12-15
-
CREATING ALGORITHM FOR SIMULATION OF FORMING FLAT WORKPIECES
Konstantin Solomonov, Sergey Lezhnev16-19
-
SITE OF ACTIVE PARTICIPANT IN THE ELECTRICITY MARKET
Przemysław Wanat, Dariusz Bober20-25
-
WIRELESS SENSOR PHYSICAL ACTIVITY BASED ON LOW-POWER PROCESSOR
Rafał Borowiec, Wojciech Surtel26-31
-
APPLICATION CHAN-VESE METHODS IN MEDICAL IMAGE SEGMENTATION
Paweł Prokop32-37
-
EFFECT OF HIGH VOLTAGE ON THE DEVELOPMENT OF THE PLANT TISSUE
Eliška Hutová, Petr Marcoň, Karel Bartušek38-41
-
ENVIRONMENTAL APPLICATION OF ELECTRICAL DISCHARGE FOR OZONE TREATMENT OF SOIL
Tomoya Abiru, Fumiaki Mitsugi, Tomoaki Ikegami, Kenji Ebihara, Shin-ichi Aoqui, Kazuhiro Nagahama42-44
-
MASSIVE SIMULATIONS USING MAPREDUCE MODEL
Artur Krupa, Bartosz Sawicki45-47
-
EFFICIENT CONVERSION OF ENERGY IN THE CONDITIONS OF TRIGENERATION OF HEAT, COOLING AND ELECTRIC POWER
Nadzeya Viktarovich48-51
-
ISOTROPY ANALYSIS OF METAMATERIALS
Arnold Kalvach, Zsolt Szabó52-54
-
A CONTROL UNIT FOR A PULSED NQR-FFT SPECTROMETER
Andriy Samila, Alexander Khandozhko, Ivan Hryhorchak, Leonid Politans’kyy, Taras Kazemirskiy55-58
-
THE INFLUENCE OF SIO2, TIO2 AND AL2O3 NANOPARTICLE ADDITIVES ON SELECTED PARAMETERS OF CONCRETE MIX AND SELF-COMPACTING CONCRETE
Paweł Niewiadomski59-61
-
FREQUENCY DEPENDENCE OF THE MAGNETOELECTRIC VOLTAGE COEFFICIENT IN (BiFeO3)x-(BaTiO3)1-x CERAMICS
Tomasz Pikula, Karol Kowal, Piotr Guzdek62-69
-
HIGH TEMPERATURE ANNEALING INFLUENCE ON ELECTRIC PROPERTIES OF NANOCOMPOSITE (FeCoZr)81.8(CaF2)18.2
Vitalii Bondariev, Tomasz Kołtunowicz70-76
-
INTERROGATION SYSTEMS FOR MULTIPLEXED FIBER BRAGG SENSORS
Damian Harasim, Piotr Kisała77-84
-
APPLICATION OF SEMICONDUCTOR GAS SENSORS ARRAY FOR CONTINUOUS MONITORING OF SEWAGE TREATMENT PROCESS REGULARITY
Łukasz Guz85-91
-
THE MODEL OF OBJECTS’ SORTING PROCESS BY USING NEURO APPROACH
Jaroslav Lotysz92-98
Archives
-
Vol. 7 No. 4
2017-12-21 23
-
Vol. 7 No. 3
2017-09-30 24
-
Vol. 7 No. 2
2017-06-30 27
-
Vol. 7 No. 1
2017-03-03 33
-
Vol. 6 No. 4
2016-12-22 16
-
Vol. 6 No. 3
2016-08-08 18
-
Vol. 6 No. 2
2016-05-10 16
-
Vol. 6 No. 1
2016-02-04 16
-
Vol. 5 No. 4
2015-10-28 19
-
Vol. 5 No. 3
2015-09-02 17
-
Vol. 5 No. 2
2015-06-30 15
-
Vol. 5 No. 1
2015-03-31 18
-
Vol. 4 No. 4
2014-12-09 29
-
Vol. 4 No. 3
2014-09-26 22
-
Vol. 4 No. 2
2014-06-18 21
-
Vol. 4 No. 1
2014-03-12 19
-
Vol. 3 No. 4
2013-12-27 20
-
Vol. 3 No. 3
2013-07-24 13
-
Vol. 3 No. 2
2013-05-16 9
-
Vol. 3 No. 1
2013-02-14 11
Main Article Content
DOI
Authors
Abstract
Composition-dependent magnetoelectric properties of sintered (BiFeO3)x-(BaTiO3)1-x ceramics have been recently observed and reported in the literature. Measurements of the magnetoelectric effect (ME) for these materials have been performed by usage of the dynamic method. The samples with x = 0.9, 0.8 and 0.7 were placed in a static (DC) magnetic field created by an electromagnet on which a sinusoidal (AC) magnetic field with a frequency of 1 kHz produced by Helmholtz coils was superimposed. In this work the theory of the dynamic measurement was presented and the optimal frequency of the AC field was determined in order to minimize the processes causing undesired reduction of the measured voltage signal.
Keywords:
References
Duong G. V., et al.: The lock-in technique for studying magnetoelectric effect. Journal of Magnetism and Magnetic Materials 316, 2/2007, 390–393.
Eerenstein W., Mathur N. D., Scott J. F.: Multiferroic and magnetoelectric materials. Nature 442, 17/2006, 759–765.
Fiebig M.: Revival of the magnetoelectric effect. Journal of Physics D: Applied Physics 38, 8/2005, R123–R152.
Kleemann W., Borisov P.: Multiferroic and magnetoelectric materials for spintronics w Smart Materials for Energy, Communications and Security. red. Luk’yanchuk A., Mezzane D., Springer, Dordrecht 2008.
Kowal K., Jartych E., Guzdek P., Stoch P., Wodecka-Duś B., Lisińska-Czekaj A., Czekaj D.: X-ray diffraction, Mossbauer spectroscopy, and magnetoelectric effect studies of (BiFeO3)x-(BaTiO3)1-x solid solutions. Nukleonika 58, 1/2013, 57–61.
Kowal K., Kowalczyk M., Czekaj D., Jartych E.: Structure and some magnetic properties of (BiFeO3)x–(BaTiO3)1-x solid solutions prepared by solid-state sintering. Nukleonika, w druku.
Krotov S. S., Lisnyak A. V.: Development of the thermodynamic theory for the linear magnetoelectric effect in Cr2O3 antiferromagnet. Doklady Physics 46, 11/2001, 777–779.
Kumar M., et al.: An experimental setup for dynamic measurement of magnetoelectric effect. Bulletin of Materials Science 21, 3/1998, 251–255.
Park T., et al.: Composition-dependent magnetic properties of BiFeO3-BaTiO3 solid solution nanostructures. Physical Review B 82, 2/2010, 024431/1–10.
Priya S., et al.: Recent advancements in magnetoelectric particulate and laminate composites. Journal of Electroceramics 19, 2007, 147–164.
Ravinski A., et al.: Magnetyczno-dielektryczne właściwości polikrystalicznej ceramiki GdxBi1-xFeO3. Materiały Ceramiczne 63, 3/2011, 495–498.
Rivera J. P.: A short review of the magnetoelectric effect and related experimental techniques on single phase (multi-) ferroics. The European Physical Journal B 71, 3/2009, 299–313.
Rivera J. P.: On definitions, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr-Cl boracite. Ferroelectrics 161, 1/1994, 165–180.
Salje E.: Ferroelastic Materials. Annual Review of Materials Research 42, 7/2012, 265–283.
Shi Z., Wang C., Liu X., Nan C.: A four-state memory cell based on magnetoelectric composite. Chinese Science Bulletin 53, 14/2008, 2135–2138.
Singh R. S., et al.: Dielectric and magnetoelectric properties of Bi5FeTi3O15. Solid State Communications 91, 7/1994, 567–569.
Stoch A., et al.: Właściwości magnetoelektryczne roztworu stałego 0,5Bi0,95Dy0,05FeO3-0,5Pb(Fe2/3W1/3)O3. Materiały Ceramiczne 64, 4/2012, 443–446.
Zvezdin A. K., Logginov A. S., Meshkov G. A., Pyatakov A. P.: Multiferroics: promising materials for microelectronics, spintronics, and sensor technique. Bulletin of the Russian Academy of Sciences: Physics 71, 11/2007, 1561–1562.
Article Details
Abstract views: 282
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
