FREQUENCY DEPENDENCE OF THE MAGNETOELECTRIC VOLTAGE COEFFICIENT IN (BiFeO3)x-(BaTiO3)1-x CERAMICS
Tomasz Pikula
t.pikula@pollub.plPolitechnika Lubelska, Instytut Elektroniki i Technik Informacyjnych, Zakład Elektroniki i Fizyki Technicznej (Poland)
Karol Kowal
Narodowe Centrum Badań Jądrowych, Departament Energii Jądrowej, Zakład Energetyki Jądrowej (Poland)
Piotr Guzdek
Instytut Technologii Elektronowej, Oddział w Krakowie, Zakład Mikroelektroniki (Poland)
Abstract
Composition-dependent magnetoelectric properties of sintered (BiFeO3)x-(BaTiO3)1-x ceramics have been recently observed and reported in the literature. Measurements of the magnetoelectric effect (ME) for these materials have been performed by usage of the dynamic method. The samples with x = 0.9, 0.8 and 0.7 were placed in a static (DC) magnetic field created by an electromagnet on which a sinusoidal (AC) magnetic field with a frequency of 1 kHz produced by Helmholtz coils was superimposed. In this work the theory of the dynamic measurement was presented and the optimal frequency of the AC field was determined in order to minimize the processes causing undesired reduction of the measured voltage signal.
Keywords:
multiferroics, magnetoelectric effect (ME), magnetoelectric materials, magnetoelectric voltage coefficient, lock-in technique, dynamic measurement of ME effectReferences
Duong G. V., et al.: The lock-in technique for studying magnetoelectric effect. Journal of Magnetism and Magnetic Materials 316, 2/2007, 390–393.
Google Scholar
Eerenstein W., Mathur N. D., Scott J. F.: Multiferroic and magnetoelectric materials. Nature 442, 17/2006, 759–765.
Google Scholar
Fiebig M.: Revival of the magnetoelectric effect. Journal of Physics D: Applied Physics 38, 8/2005, R123–R152.
Google Scholar
Kleemann W., Borisov P.: Multiferroic and magnetoelectric materials for spintronics w Smart Materials for Energy, Communications and Security. red. Luk’yanchuk A., Mezzane D., Springer, Dordrecht 2008.
Google Scholar
Kowal K., Jartych E., Guzdek P., Stoch P., Wodecka-Duś B., Lisińska-Czekaj A., Czekaj D.: X-ray diffraction, Mossbauer spectroscopy, and magnetoelectric effect studies of (BiFeO3)x-(BaTiO3)1-x solid solutions. Nukleonika 58, 1/2013, 57–61.
Google Scholar
Kowal K., Kowalczyk M., Czekaj D., Jartych E.: Structure and some magnetic properties of (BiFeO3)x–(BaTiO3)1-x solid solutions prepared by solid-state sintering. Nukleonika, w druku.
Google Scholar
Krotov S. S., Lisnyak A. V.: Development of the thermodynamic theory for the linear magnetoelectric effect in Cr2O3 antiferromagnet. Doklady Physics 46, 11/2001, 777–779.
Google Scholar
Kumar M., et al.: An experimental setup for dynamic measurement of magnetoelectric effect. Bulletin of Materials Science 21, 3/1998, 251–255.
Google Scholar
Park T., et al.: Composition-dependent magnetic properties of BiFeO3-BaTiO3 solid solution nanostructures. Physical Review B 82, 2/2010, 024431/1–10.
Google Scholar
Priya S., et al.: Recent advancements in magnetoelectric particulate and laminate composites. Journal of Electroceramics 19, 2007, 147–164.
Google Scholar
Ravinski A., et al.: Magnetyczno-dielektryczne właściwości polikrystalicznej ceramiki GdxBi1-xFeO3. Materiały Ceramiczne 63, 3/2011, 495–498.
Google Scholar
Rivera J. P.: A short review of the magnetoelectric effect and related experimental techniques on single phase (multi-) ferroics. The European Physical Journal B 71, 3/2009, 299–313.
Google Scholar
Rivera J. P.: On definitions, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr-Cl boracite. Ferroelectrics 161, 1/1994, 165–180.
Google Scholar
Salje E.: Ferroelastic Materials. Annual Review of Materials Research 42, 7/2012, 265–283.
Google Scholar
Shi Z., Wang C., Liu X., Nan C.: A four-state memory cell based on magnetoelectric composite. Chinese Science Bulletin 53, 14/2008, 2135–2138.
Google Scholar
Singh R. S., et al.: Dielectric and magnetoelectric properties of Bi5FeTi3O15. Solid State Communications 91, 7/1994, 567–569.
Google Scholar
Stoch A., et al.: Właściwości magnetoelektryczne roztworu stałego 0,5Bi0,95Dy0,05FeO3-0,5Pb(Fe2/3W1/3)O3. Materiały Ceramiczne 64, 4/2012, 443–446.
Google Scholar
Zvezdin A. K., Logginov A. S., Meshkov G. A., Pyatakov A. P.: Multiferroics: promising materials for microelectronics, spintronics, and sensor technique. Bulletin of the Russian Academy of Sciences: Physics 71, 11/2007, 1561–1562.
Google Scholar
Authors
Tomasz Pikulat.pikula@pollub.pl
Politechnika Lubelska, Instytut Elektroniki i Technik Informacyjnych, Zakład Elektroniki i Fizyki Technicznej Poland
Authors
Karol KowalNarodowe Centrum Badań Jądrowych, Departament Energii Jądrowej, Zakład Energetyki Jądrowej Poland
Authors
Piotr GuzdekInstytut Technologii Elektronowej, Oddział w Krakowie, Zakład Mikroelektroniki Poland
Statistics
Abstract views: 194PDF downloads: 72
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Karol Kowal, Mieczysław Borysiewicz, RELIABILITY ANALYSIS OF PWR REACTOR PROTECTION SYSTEM , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 5 No. 1 (2015)
- Mieczysław Józef Borysiewicz, Karol Kowal, Piotr Andrzej Prusiński, Marcin Dąbrowski, AN APPLICATION OF IRIDM IN THE DECISION MAKING PROCESS ON FUEL CONVERSION OF THE MARIA REACTOR , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 3 No. 3 (2013)
- Mieczysław Józef Borysiewicz, Karol Kowal, Piotr Prysiński, Marcin Dąbrowski, AN INTEGRATED RISK INFORMED DECISION MAKING IN THE NUCLEAR INDUSTRY , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 3 No. 2 (2013)
- Karol Kowal, Mieczysław Borysiewicz, RELIABILITY ANALYSIS OF EMERGENCY DECAY HEAT REMOVAL IN PWR REACTOR , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 5 No. 3 (2015)