FREQUENCY DEPENDENCE OF THE MAGNETOELECTRIC VOLTAGE COEFFICIENT IN (BiFeO3)x-(BaTiO3)1-x CERAMICS


Abstract

Composition-dependent magnetoelectric properties of sintered (BiFeO3)x-(BaTiO3)1-x ceramics have been recently observed and reported in the literature. Measurements of the magnetoelectric effect (ME) for these materials have been performed by usage of the dynamic method. The samples with x = 0.9, 0.8 and 0.7 were placed in a static (DC) magnetic field created by an electromagnet on which a sinusoidal (AC) magnetic field with a frequency of 1 kHz produced by Helmholtz coils was superimposed. In this work the theory of the dynamic measurement was presented and the optimal frequency of the AC field was determined in order to minimize the processes causing undesired reduction of the measured voltage signal.


Keywords

multiferroics; magnetoelectric effect (ME); magnetoelectric materials; magnetoelectric voltage coefficient; lock-in technique; dynamic measurement of ME effect

Duong G. V., et al.: The lock-in technique for studying magnetoelectric effect. Journal of Magnetism and Magnetic Materials 316, 2/2007, 390–393.

Eerenstein W., Mathur N. D., Scott J. F.: Multiferroic and magnetoelectric materials. Nature 442, 17/2006, 759–765.

Fiebig M.: Revival of the magnetoelectric effect. Journal of Physics D: Applied Physics 38, 8/2005, R123–R152.

Kleemann W., Borisov P.: Multiferroic and magnetoelectric materials for spintronics w Smart Materials for Energy, Communications and Security. red. Luk’yanchuk A., Mezzane D., Springer, Dordrecht 2008.

Kowal K., Jartych E., Guzdek P., Stoch P., Wodecka-Duś B., Lisińska-Czekaj A., Czekaj D.: X-ray diffraction, Mossbauer spectroscopy, and magnetoelectric effect studies of (BiFeO3)x-(BaTiO3)1-x solid solutions. Nukleonika 58, 1/2013, 57–61.

Kowal K., Kowalczyk M., Czekaj D., Jartych E.: Structure and some magnetic properties of (BiFeO3)x–(BaTiO3)1-x solid solutions prepared by solid-state sintering. Nukleonika, w druku.

Krotov S. S., Lisnyak A. V.: Development of the thermodynamic theory for the linear magnetoelectric effect in Cr2O3 antiferromagnet. Doklady Physics 46, 11/2001, 777–779.

Kumar M., et al.: An experimental setup for dynamic measurement of magnetoelectric effect. Bulletin of Materials Science 21, 3/1998, 251–255.

Park T., et al.: Composition-dependent magnetic properties of BiFeO3-BaTiO3 solid solution nanostructures. Physical Review B 82, 2/2010, 024431/1–10.

Priya S., et al.: Recent advancements in magnetoelectric particulate and laminate composites. Journal of Electroceramics 19, 2007, 147–164.

Ravinski A., et al.: Magnetyczno-dielektryczne właściwości polikrystalicznej ceramiki GdxBi1-xFeO3. Materiały Ceramiczne 63, 3/2011, 495–498.

Rivera J. P.: A short review of the magnetoelectric effect and related experimental techniques on single phase (multi-) ferroics. The European Physical Journal B 71, 3/2009, 299–313.

Rivera J. P.: On definitions, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr-Cl boracite. Ferroelectrics 161, 1/1994, 165–180.

Salje E.: Ferroelastic Materials. Annual Review of Materials Research 42, 7/2012, 265–283.

Shi Z., Wang C., Liu X., Nan C.: A four-state memory cell based on magnetoelectric composite. Chinese Science Bulletin 53, 14/2008, 2135–2138.

Singh R. S., et al.: Dielectric and magnetoelectric properties of Bi5FeTi3O15. Solid State Communications 91, 7/1994, 567–569.

Stoch A., et al.: Właściwości magnetoelektryczne roztworu stałego 0,5Bi0,95Dy0,05FeO3-0,5Pb(Fe2/3W1/3)O3. Materiały Ceramiczne 64, 4/2012, 443–446.

Zvezdin A. K., Logginov A. S., Meshkov G. A., Pyatakov A. P.: Multiferroics: promising materials for microelectronics, spintronics, and sensor technique. Bulletin of the Russian Academy of Sciences: Physics 71, 11/2007, 1561–1562.


Published : 2015-10-28


Pikula, T., Kowal, K., & Guzdek, P. (2015). FREQUENCY DEPENDENCE OF THE MAGNETOELECTRIC VOLTAGE COEFFICIENT IN (BiFeO3)x-(BaTiO3)1-x CERAMICS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 5(4), 62-69. https://doi.org/10.5604/20830157.1176578

Tomasz Pikula  t.pikula@pollub.pl
Politechnika Lubelska, Instytut Elektroniki i Technik Informacyjnych, Zakład Elektroniki i Fizyki Technicznej  Poland
Karol Kowal 
Narodowe Centrum Badań Jądrowych, Departament Energii Jądrowej, Zakład Energetyki Jądrowej  Poland
Piotr Guzdek 
Instytut Technologii Elektronowej, Oddział w Krakowie, Zakład Mikroelektroniki  Poland