FREQUENCY DEPENDENCE OF THE MAGNETOELECTRIC VOLTAGE COEFFICIENT IN (BiFeO3)x-(BaTiO3)1-x CERAMICS

Tomasz Pikula

t.pikula@pollub.pl
Politechnika Lubelska, Instytut Elektroniki i Technik Informacyjnych, Zakład Elektroniki i Fizyki Technicznej (Poland)

Karol Kowal


Narodowe Centrum Badań Jądrowych, Departament Energii Jądrowej, Zakład Energetyki Jądrowej (Poland)

Piotr Guzdek


Instytut Technologii Elektronowej, Oddział w Krakowie, Zakład Mikroelektroniki (Poland)

Abstract

Composition-dependent magnetoelectric properties of sintered (BiFeO3)x-(BaTiO3)1-x ceramics have been recently observed and reported in the literature. Measurements of the magnetoelectric effect (ME) for these materials have been performed by usage of the dynamic method. The samples with x = 0.9, 0.8 and 0.7 were placed in a static (DC) magnetic field created by an electromagnet on which a sinusoidal (AC) magnetic field with a frequency of 1 kHz produced by Helmholtz coils was superimposed. In this work the theory of the dynamic measurement was presented and the optimal frequency of the AC field was determined in order to minimize the processes causing undesired reduction of the measured voltage signal.


Keywords:

multiferroics, magnetoelectric effect (ME), magnetoelectric materials, magnetoelectric voltage coefficient, lock-in technique, dynamic measurement of ME effect

Duong G. V., et al.: The lock-in technique for studying magnetoelectric effect. Journal of Magnetism and Magnetic Materials 316, 2/2007, 390–393.
  Google Scholar

Eerenstein W., Mathur N. D., Scott J. F.: Multiferroic and magnetoelectric materials. Nature 442, 17/2006, 759–765.
  Google Scholar

Fiebig M.: Revival of the magnetoelectric effect. Journal of Physics D: Applied Physics 38, 8/2005, R123–R152.
  Google Scholar

Kleemann W., Borisov P.: Multiferroic and magnetoelectric materials for spintronics w Smart Materials for Energy, Communications and Security. red. Luk’yanchuk A., Mezzane D., Springer, Dordrecht 2008.
  Google Scholar

Kowal K., Jartych E., Guzdek P., Stoch P., Wodecka-Duś B., Lisińska-Czekaj A., Czekaj D.: X-ray diffraction, Mossbauer spectroscopy, and magnetoelectric effect studies of (BiFeO3)x-(BaTiO3)1-x solid solutions. Nukleonika 58, 1/2013, 57–61.
  Google Scholar

Kowal K., Kowalczyk M., Czekaj D., Jartych E.: Structure and some magnetic properties of (BiFeO3)x–(BaTiO3)1-x solid solutions prepared by solid-state sintering. Nukleonika, w druku.
  Google Scholar

Krotov S. S., Lisnyak A. V.: Development of the thermodynamic theory for the linear magnetoelectric effect in Cr2O3 antiferromagnet. Doklady Physics 46, 11/2001, 777–779.
  Google Scholar

Kumar M., et al.: An experimental setup for dynamic measurement of magnetoelectric effect. Bulletin of Materials Science 21, 3/1998, 251–255.
  Google Scholar

Park T., et al.: Composition-dependent magnetic properties of BiFeO3-BaTiO3 solid solution nanostructures. Physical Review B 82, 2/2010, 024431/1–10.
  Google Scholar

Priya S., et al.: Recent advancements in magnetoelectric particulate and laminate composites. Journal of Electroceramics 19, 2007, 147–164.
  Google Scholar

Ravinski A., et al.: Magnetyczno-dielektryczne właściwości polikrystalicznej ceramiki GdxBi1-xFeO3. Materiały Ceramiczne 63, 3/2011, 495–498.
  Google Scholar

Rivera J. P.: A short review of the magnetoelectric effect and related experimental techniques on single phase (multi-) ferroics. The European Physical Journal B 71, 3/2009, 299–313.
  Google Scholar

Rivera J. P.: On definitions, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr-Cl boracite. Ferroelectrics 161, 1/1994, 165–180.
  Google Scholar

Salje E.: Ferroelastic Materials. Annual Review of Materials Research 42, 7/2012, 265–283.
  Google Scholar

Shi Z., Wang C., Liu X., Nan C.: A four-state memory cell based on magnetoelectric composite. Chinese Science Bulletin 53, 14/2008, 2135–2138.
  Google Scholar

Singh R. S., et al.: Dielectric and magnetoelectric properties of Bi5FeTi3O15. Solid State Communications 91, 7/1994, 567–569.
  Google Scholar

Stoch A., et al.: Właściwości magnetoelektryczne roztworu stałego 0,5Bi0,95Dy0,05FeO3-0,5Pb(Fe2/3W1/3)O3. Materiały Ceramiczne 64, 4/2012, 443–446.
  Google Scholar

Zvezdin A. K., Logginov A. S., Meshkov G. A., Pyatakov A. P.: Multiferroics: promising materials for microelectronics, spintronics, and sensor technique. Bulletin of the Russian Academy of Sciences: Physics 71, 11/2007, 1561–1562.
  Google Scholar


Published
2015-10-28

Cited by

Pikula, T., Kowal, K., & Guzdek, P. (2015). FREQUENCY DEPENDENCE OF THE MAGNETOELECTRIC VOLTAGE COEFFICIENT IN (BiFeO3)x-(BaTiO3)1-x CERAMICS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 5(4), 62–69. https://doi.org/10.5604/20830157.1176578

Authors

Tomasz Pikula 
t.pikula@pollub.pl
Politechnika Lubelska, Instytut Elektroniki i Technik Informacyjnych, Zakład Elektroniki i Fizyki Technicznej Poland

Authors

Karol Kowal 

Narodowe Centrum Badań Jądrowych, Departament Energii Jądrowej, Zakład Energetyki Jądrowej Poland

Authors

Piotr Guzdek 

Instytut Technologii Elektronowej, Oddział w Krakowie, Zakład Mikroelektroniki Poland

Statistics

Abstract views: 199
PDF downloads: 75