ANALYSES OF SKIN LESION AREAS AFTER THRESHOLDING
Article Sidebar
Open full text
Issue Vol. 10 No. 3 (2020)
-
THE DIAGNOSTIC OF TWO-PHASE SEPARATION PROCESS USING DIGITAL IMAGE SEGMENTATION ALGORITHMS
Michał Łukiański, Radoslaw Wajman5-8
-
ANALYSES OF SKIN LESION AREAS AFTER THRESHOLDING
Magdalena Michalska9-12
-
THE INFLUENCE OF THE PRINCIPAL COMPONENT ANALYSIS OF TEXTURE FEATURES ON THE CLASSIFICATION QUALITY OF SPONGE TISSUE IMAGES
Róża Dzierżak13-16
-
SPATIAL PARAMETERS OF STATOGRAMS IN DIAGNOSING PATHOLOGIES OF THE HUMAN LOCOMOTOR SYSTEM
Sergii Pavlov, Yurii Bezsmertnyi, Stanislav Iaremyn, Halyna Bezsmertna17-21
-
INFOCOMMUNICATION TECHNOLOGIES FOR ASSESSMENT AND PREDICTION OF ENVIRONMENT IMPACT ON HUMAN HEALTH
Oksana Boyko, Nataliya Dorosh, Irena Yermakova, Oleh Dorosh, Żaklin Grądz22-25
-
USING BRAIN-COMPUTER INTERFACE TECHNOLOGY AS A CONTROLLER IN VIDEO GAMES
Błażej Zając, Szczepan Paszkiel26-31
-
PERFORMANCE COMPARISON OF MACHINE LEARNING ALGORITHMS FOR PREDICTIVE MAINTENANCE
Jakub Gęca32-35
-
SOLVING THE FAILING TRACK MARKER PROBLEM IN AUTOMATED GUIDED VEHICLE SYSTEMS – A CASE STUDY
Tomasz Lewowski36-43
-
BAPV SYSTEM MODELING FOR THE SINGLE-FAMILY HOUSE: A CASE STUDY
Ewelina Krawczak44-47
-
ANALYSIS OF HEAT TRANSFER IN BUILDING PARTITIONS WITH THE USE OF COMPUTATIONAL FLUID DYNAMICS TOOLS
Arkadiusz Urzędowski, Joanna Styczeń, Magdalena Paśnikowska-Łukaszuk48-51
-
SELECTED ASPECTS IN THE ANALYSIS OF THE COMBUSTION PROCESS USING WAVELET TRANSFORM
Żaklin Grądz52-55
-
MANAGEMENT OF POWER IN ASPECTS OF ENERGY PRODUCTION PRICES FOR FUEL ENERGY GENERATORS
Konrad Zuchora56-59
-
A REVIEW OF VOLTAGE CONTROL STRATEGIES FOR LOW-VOLTAGE NETWORKS WITH HIGH PENETRATION OF DISTRIBUTED GENERATION
Klara Janiga60-65
-
DISASSEMBLABLE VACUUM CHAMBER AS AN INNOVATIVE TEST STAND DESIGNED FOR RESEARCH ON IMPROVING THE OPERATIONAL PARAMETERS OF POWER SWITCHING APPARATUS
Michał Lech66-69
-
ELECTROMAGNETIC COMPATIBILITY TESTING OF ELECTRIC VEHICLES AND THEIR CHARGERS
Aleksander Chudy, Henryka Danuta Stryczewska70-73
-
FREQUENCY MODULATION APPROACH BASED ON SPLIT-RING RESONATOR LOADED BY VARACTOR DIODE
Dmytro Vovchuk, Serhii Haliuk, Pavlo Robulets, Leonid Politanskyi74-77
-
INCREASING RADIATION RESISTANCE OF MEMORY DEVICES BASED ON AMORPHOUS SEMICONDUCTORS
Vasyl Kychak, Ivan Slobodian, Victor Vovk78-81
-
TORQUE MEASURING CHANNELS: DYNAMIC AND STATIC METROLOGICAL CHARACTERISTICS
Vasyl Kukharchuk, Valerii Hraniak, Samoil Katsyv, Volodymyr Holodyuk82-85
-
EXPERIMENTAL STUDY OF NATURAL GAS HUMIDITY CONTROL DEVICE
Yosyp Bilynsky, Oksana Horodetska, Svitlana Sirenko, Dmytro Novytskyi86-90
-
ELLIPTIC-CURVE CRYPTOGRAPHY (ECC) AND ARGON2 ALGORITHM IN PHP USING OPENSSL AND SODIUM LIBRARIES
Mariusz Duka91-94
-
OPTIMIZATION IN VERY LARGE DATABASES BY PARTITIONING TABLES
Piotr Bednarczuk95-98
-
ANALISYS OF THE INFLUENCE OF GLUE JOINTS ON THE MEASUREMENT OF PHYSICAL PROPERTIES OF STRUCTURAL ELEMENTS USING FIBER BRAGG GRATING
Tomasz Zieliński, Łukasz Zychowicz99-102
Archives
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
-
Vol. 8 No. 4
2018-12-16 16
-
Vol. 8 No. 3
2018-09-25 16
-
Vol. 8 No. 2
2018-05-30 18
-
Vol. 8 No. 1
2018-02-28 18
Main Article Content
DOI
Authors
Abstract
Melanoma is one of the fastest spreading cancers. The aim of the article is to segment the skin lesions from human skin dermatoscopic images covered by melanoma. Threshold segmentation was used, which allows a single skin lesion to be analyzed. It shows the four areas of each based on their color. The created software monitors the border of skin lesion areas. Segmentation and analysis of the resulting images with different areas of skin change was carried out in the Matlab software.
Keywords:
References
Argenziano G., Catricalà C., Ardigo M.: Seven-point checklist of dermoscopy revisited. The British Journal of Dermatology 4, 2011, 785–90. DOI: https://doi.org/10.1111/j.1365-2133.2010.10194.x
Breslow A.: Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Annals of Surgery 172, 1970, 902–908. DOI: https://doi.org/10.1097/00000658-197011000-00017
Celebi M. E., Kingravi H. A., Uddin B.: A methodological approach to the classification of dermoscopy images. Computerized Medical Imaging and Graphics 2007, 362–373. DOI: https://doi.org/10.1016/j.compmedimag.2007.01.003
Celebi M. E., Wen Q., Hwang S., Iyatomi H., Schaefer G.: Lesion border detection in dermoscopy images using ensembles of thresholding methods. Skin Res. Technol. 19 (1), 2013, 252–258. DOI: https://doi.org/10.1111/j.1600-0846.2012.00636.x
Clark W. H., From L., Bernardino E. A.: Histogenesis and biologic behavior of primary human malignant melanomas of the skin. Cancer Research 29, 1969, 705–726.
Damilola A., Okuboyejo O.: Automating skin disease diagnosis using image classifications. Proceedings of the world congress on engineering and computer science II, San Francisco 2013.
Dermatoscopy images database: https://www.dermis.net/dermisroot/en/list/m/search.htm (accessed: 20.03.2020).
Dermatoscopy images database: https://www.isic-archive.com/ (accessed: 20.03.2020).
Emery J. D, Hunter J., Hall P. N.: Accuracy of siascopy for pigmented skin lesions encountered in primary care: development and validation of a new diagnostic algorithm. BMC Dermatology 10, 2010, 1–9. DOI: https://doi.org/10.1186/1471-5945-10-9
Fiorese, M., Peserico, E., Silletti, A.: VirtualShave: automated hair removal from digital dermatoscopic image. Proc. IEEE EMBS, 2011, 5145–5148. DOI: https://doi.org/10.1109/IEMBS.2011.6091274
Ganster H., Pinz A., R¨ohrer R.: Automated melanoma recognition medical imaging. IEEE Transactions 20(3), 2001, 233–239. DOI: https://doi.org/10.1109/42.918473
Henning J., Dusza S., Wang S.: The cash (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy. Archives of Dermatology 56, 2007, 45–52. DOI: https://doi.org/10.1016/j.jaad.2006.09.003
https://www.mathworks.com/help/images/pixel-values-and-image-statistics.html (accessed: 20.03.2020).
Huang, A., Kwan, S., Chang, W., Liu, M., Chi, M., Chen, G.: A robust hair segmentation and removal approach for clinical images of skin lesions. Proc. IEEE EMBS 2013, 3315–3318. DOI: https://doi.org/10.1109/EMBC.2013.6610250
Jahanifar M., Tajeddin N. Z., Mohammadzadeh Asl B., Gooya A.: Supervised saliency map driven segmentation of lesions in dermoscopic images. IEEE Journal of Biomedical and Health Informatics 23(2), 2019, 509–518. DOI: https://doi.org/10.1109/JBHI.2018.2839647
Kiani, K., Sharafat, A.R.: E-shaver: An improved dullrazor for digitally removing dark and light-colored hairs in dermoscopic images. Comput. Biol. Med. 41(3), 2011, 139–145. DOI: https://doi.org/10.1016/j.compbiomed.2011.01.003
Kittler H., Riedl E., Rosendahl C.: Dermatoscopy of unpigmented lesions of the skin: a new classification of vessel morphology based on pattern analysis. Dermapathology. Practical and Conceptual 14, 2008, 3–7.
Koehoorn J., Sobiecki A. C., Boda D., Diaconeasa A., Doshi S., Paisey S., Jalba A., Telea A.: Automated digital hair removal by threshold decomposition and morphological analysis. International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing 9082, 2015, 15–26. DOI: https://doi.org/10.1007/978-3-319-18720-4_2
Korjakowska J. J.: Automatic detection of melanomas: An application based on the abcd criteria. Springer 7339, 2012, 67–76. DOI: https://doi.org/10.1007/978-3-642-31196-3_7
Korotkov K., Garcia R.: Computerized analysis of pigmented skin lesions: A review. Artificial Intelligence in Medicine 56(2), 2012, 69–90. DOI: https://doi.org/10.1016/j.artmed.2012.08.002
Leo G. D., Paolillo A., Sommella P., G. Fabbrocini G., Rescigno O.: A software tool for the diagnosis of melanomas. IEEE Instrumentation and Measurement Technology Conference 2010, 886–891.
Maglogiannis I., Pavlopoulos S., Koutsouris D.: An integrated computer supported acquisition, handling, and characterization system for pigmented skin lesions in dermatological images. IEEE Transactions on Information Technology in Biomedicine 2005, 86–98. DOI: https://doi.org/10.1109/TITB.2004.837859
Mendonca T., Ferreira P. M., Marques J. S., Marcal A. R., Rozeira J.: A dermoscopic image database for research and benchmarking. 35th Annual International Conference of the IEEE EMBS Osaka 2013, 5437–5440. DOI: https://doi.org/10.1109/EMBC.2013.6610779
Michalska M.: Przegląd sposobów segmentacji zmian skórnych. Interdyscyplinarne prace doktorantów Politechniki Lubelskiej 2019, 33-45.
Michalska M.: Wykorzystanie segmentacji przez progowanie w wykrywaniu czerniaka skóry. Wybrane zagadnienia z zakresu elektrotechniki, inżynierii biomedycznej i budownictwa prace doktorantów Politechniki Lubelskiej 2019, 147–157.
Michalska M., Hotra O.: Quality analysis of dermatoscopic images thresholding with malignant melanoma, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2019, 768–774 DOI: https://doi.org/10.1117/12.2536671
Oliveira R. B., Filho E. M., Ma Z., Papa J. P., Pereira A. S., Tavares J. M. R. S.: Computational methods for the image segmentation of pigmented skin lesions: A review. Comput. Methods Programs Biomed. 131, 2016, 127–141. DOI: https://doi.org/10.1016/j.cmpb.2016.03.032
Przystalski K.: Detekcja i klasyfikacja barwnikowych zmian skóry na zdjęciach wielowarstwowych [PhD thesis]. Warszawa 2014.
Rosendahl C., Cameron A., McColl I., Wilkinson D.: Dermatoscopy in routine practice Chaos and Clues. Australian Family Physician 41(7), 2012, 482–487.
Soyer P., Argenziano G., Zalaudek I.: Three-point checklist of dermoscopy. Dermatology 208, 2004, 27–31. DOI: https://doi.org/10.1159/000075042
Article Details
Abstract views: 443
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
