OVERVIEW OF AOI USE IN SURFACE-MOUNT TECHNOLOGY CONTROL
Article Sidebar
Open full text
Issue Vol. 10 No. 4 (2020)
-
MODELING ELECTROMAGNETIC NANOSTRUCTURES AND EXPERIMENTING WITH NANOELECTRIC ELEMENTS TO FORM PERIODIC STRUCTURES
Miloslav Steinbauer, Roman Pernica, Jiri Zukal, Radim Kadlec, Tibor Bachorec, Pavel Fiala4-14
-
X-RAY DIFFRACTION AND MÖSSBAUER SPECTROSCOPY INVESTIGATIONS OF THE (Al, Ni, Co)-DOPED AgFeO2 SYNTHESIZED BY HYDROTHERMAL METHOD
Karolina Siedliska15-18
-
COMPUTER PREDICTION OF TECHNOLOGICAL REGIMES OF RAPID CONE-SHAPED ADSORPTION FILTERS WITH CHEMICAL REGENERATION OF HOMOGENEOUS POROUS LOADS
Andrii Bomba, Yurii Klymyuk, Ihor Prysіazhnіuk19-24
-
FREQUENCY RESPONSE OF NORRIS GAP DERIVATIVES AND ITS PROSPERITIES FOR GAS SPECTRA ANALYSIS
Sławomir Cięszczyk25-28
-
BIT ERROR NOTIFICATION AND ESTIMATION IN REDUNDANT SUCCESSIVE-APPROXIMATION ADC
Serhii Zakharchenko , Roman Humeniuk29-32
-
DEVELOPMENT OF A MODULAR LIGHT-WEIGHT MANIPULATOR FOR HUMAN-ROBOT INTERACTION IN MEDICAL APPLICATIONS
Adam Kurnicki, Bartłomiej Stańczyk33-37
-
TAKING INTO ACCOUNT THE PHASE INSTABILITY OF GENERATORS CAUSED BY THE INFLUENCE OF IONIZING RADIATION OF SPACE ON THE PARAMETERS OF CARRIER FREQUENCY SYNCHRONIZATION SYSTEMS
Oleksandr Turovsky, Sergei Panadiy38-42
-
MULTI-CHANNEL DIGITAL-ANALOG SYSTEM BASED ON CURRENT-CURRENT CONVERTERS
Olexiy Azarov, Yevhenii Heneralnytskyi, Nataliia Rybko43-46
-
A COMPUTER SYSTEM FOR ACQUISITION AND ANALYSIS OF MEASUREMENT DATA FOR A SKEW ROLLING MILL IN MANUFACTURING STEEL BALLS
Marcin Buczaj, Andrzej Sumorek47-50
-
RESEARCH ON A MAGNETIC FIELD SENSOR WITH A FREQUENCY OUTPUT SIGNAL BASED ON A TUNNEL-RESONANCE DIODE
Alexander Osadchuk, Vladimir Osadchuk, Iaroslav Osadchuk51-56
-
DIGITAL CONTACT POTENTIAL PROBE IN STUDYING THE DEFORMATION OF DIELECTRIC MATERIALS
Kanstantsin Pantsialeyeu, Anatoly Zharin, Oleg Gusev, Roman Vorobey, Andrey Tyavlovsky, Konstantin Tyavlovsky, Aliaksandr Svistun57-60
-
OVERVIEW OF AOI USE IN SURFACE-MOUNT TECHNOLOGY CONTROL
Magdalena Michalska61-64
-
AN ELECTRICALLY-CONTROLLED AXIAL-FLUX PERMANENT MAGNET GENERATOR
Piotr Paplicki, Paweł Prajzendanc, Marcin Wardach65-68
-
METHOD OF DETERMINING THE COP COEFFICIENT FOR A COOLING SYSTEM
Mariusz Rzasa, Sławomir Pochwała, Sławomir Szymaniec69-72
-
THE IMPACT OF DIGITAL PHOTOGRAPHY PROCESSING IN MOBILE APPLICATIONS ON THE QUALITY OF REACH IN SOCIAL MEDIA
Magdalena Paśnikowska-Łukaszuk, Arkadiusz Urzędowski73-76
-
USE OF WEB 2.0 TOOLS BY POLISH HEALTH PORTALS
Magdalena Czerwinska77-82
Archives
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
-
Vol. 8 No. 4
2018-12-16 16
-
Vol. 8 No. 3
2018-09-25 16
-
Vol. 8 No. 2
2018-05-30 18
-
Vol. 8 No. 1
2018-02-28 18
Main Article Content
DOI
Authors
Abstract
Surface-mount technology is now widely used in the production of printed circuit boards in the electronics industry and has gained many supporters. The miniaturization of electronic components has forced the introduction of machines for visual inspection of assembly correctness, which is more accurate and faster than the human eye, magnifier or microscope. Automatic Optical Inspection (AOI) is a control process that detects defects and errors in the initial PCB manufacturing process. It has become an indispensable element of contract assembly, increasing the quality of services offered and production efficiency. It uses new designs of measuring heads, miniaturization of equipment, software processing the obtained images of boards, and complicated image transformation algorithms.
Keywords:
References
Celik T., Tjahjadi T.: Contextual and variational contrast enhancement. IEEE Transactions on Image Processing 20(12), 2011, 3431–3441. DOI: https://doi.org/10.1109/TIP.2011.2157513
Chang C. C., Lin C. J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3), 2011, 1–27. DOI: https://doi.org/10.1145/1961189.1961199
Chang K. H.: Development of optical inspection system for surface mount device light emitting diodes – master thesis. National Sun Yat-sen University, Taiwan 2012.
Chang W., Su C., Guo D.: Automated optical inspection for the runout tolerance of circular saw blades. Int. J. Adv. Manuf. Technol. 66, 2013, 565–582. DOI: https://doi.org/10.1007/s00170-012-4350-6
Colledani M., Tolio T.: Impact of Quality Control on Production System Performance. CIRP Annals - Manufacturing Technology 55(1), 2006, 453–456, [http://doi.org/10.1016/S0007-8506(07)60457-0]. DOI: https://doi.org/10.1016/S0007-8506(07)60457-0
Dar M., Newman K. E., Vachtsevanos G.: On-line inspection of surface mount devices using vision and infrared sensors. Conference Record Autotestcon’95. Systems Readiness: Test Technology for the 21st Century 1995, 376–384, [http://doi.org/10.1109/AUTEST.1995.522699]. DOI: https://doi.org/10.1109/AUTEST.1995.522699
Demir D., Birecik S., Kurugollu F., Sezgin M., Bucak I.O., Sankur B., Anarim E.: Quality inspection in PCBs and SMDs using computer vision techniques. 20th Annual Conference of IEEE Industrial Electronics 1994, 857–861 [http://doi.org/10.1109/IECON.1994.397899]. DOI: https://doi.org/10.1109/IECON.1994.397899
Fang Y. C., Tzeng Y. F., Wu K. Y.: A study of integrated optical design and optimization for LED backlight module with prism patterns. Journal of Display Technology 10(10), 2014, 812–818. DOI: https://doi.org/10.1109/JDT.2014.2325560
Gao H., Jin W., Yang X., Kaynak O.: A Line-Based-Clustering Approach for Ball Grid Array Component Inspection in Surface-Mount Technology. IEEE Transactions on Industrial Electronics 64(4), 2017, 3030–3038. DOI: https://doi.org/10.1109/TIE.2016.2643600
Garakani A., Michael D. J., Koljonen J.: Automated optical inspection apparatus. US Patent 5, 640, 199, 1997.
http://www.surfacemountprocess.com/#Circuit layout
https://www.cherbsloeh.pl/attachments/category/327/Brochure-K3D-Series_EN_Rev06-2017-12.pdf
Inman R. R., Blumenfeld D. E., Huang N., Li J.: Designing production systems for quality: Research opportunities from an automotive industry perspective. International Journal of Production Research 41(9), 2003, 1953–1971 [http://doi.org/10.1080/0020754031000077293]. DOI: https://doi.org/10.1080/0020754031000077293
Juha M.: X-ray Machine Vision for Circuit Board Inspection. Conf. of SME, Proc. Vision 86, 1986, 341–355.
Kim S. E., Jeon J. J., Eom I. K.: Image contrast enhancement using entropy scaling in wavelet domain. Signal Processing 127, 2016, 1–11. DOI: https://doi.org/10.1016/j.sigpro.2016.02.016
Kuo C. F. J., Hsu C. T. M., Liu Z. X., Wu H. C.: Automatic inspection system of LED chip using two-stages back-propagation neural network. Journal of Intelligent Manufacturing 25(6), 2015, 1235–1243. DOI: https://doi.org/10.1007/s10845-012-0725-7
Kuo C. J., Fang T., Lee C.: Automated optical inspection system for surface mount device light emitting diodes. J. Intell. Manuf. 30, 2019, 641–655. DOI: https://doi.org/10.1007/s10845-016-1270-6
Kuo C. J., Tung C., Weng W: Applying the support vector machine with optimal parameter design into an automatic inspection system for classifying micro-defects on surfaces of light-emitting diode chips. J. Intell. Manuf. 30, 2019, 727–741 [http://doi.org/https://doi.org/10.1007/s10845-016-1275-1]. DOI: https://doi.org/10.1007/s10845-016-1275-1
Langley F. J., Boatright R. R., Crosby L.: Composite electro-optical testing of surface-mount device boards-one manufacturer’s experience, Proceedings: Meeting the Tests of Time, International Test Conference 1989, 686–691 [http://doi.org/10.1109/TEST.1989.82356]. DOI: https://doi.org/10.1109/TEST.1989.82356
Li Q., Ren S.: A visual detection system for rail surface defects. IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Review 42(6), 2012, 1531–1542.
Li Q., Ren S.: A visual detection system for rail surface defects. IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Review, 42(6), 2012, 1531–1542. DOI: https://doi.org/10.1109/TSMCC.2012.2198814
Lin, H. D.: Automated defect inspection of light-emitting diode chips using neural network and statistical approaches. Expert Systems With Applications 36(1), 2009, 219–226. DOI: https://doi.org/10.1016/j.eswa.2007.09.014
Ling‐Yau C., Lawrence Wing‐Tung L.: Total quality control for a surface mount technology process for the manufacture of printed circuit board assemblies, Quality and Reliability Engineering International 11(5), 1995, 325–331 [https://doi.org/10.1002/qre.4680110503]. DOI: https://doi.org/10.1002/qre.4680110503
Lu S., Zhang X., Kuang Y.: Optimal illuminator design for automatic optical inspection systems. International Journal of Computer Applications in Technology 37(2), 2010. DOI: https://doi.org/10.1504/IJCAT.2010.032199
Mahon J., Harris N., Vernon D.: Automated visual inspection of solder paste deposition on surface mount technology PCBs. Elsevier – Computers in Industry, 1989. DOI: https://doi.org/10.1016/0166-3615(89)90029-8
Nandi G., Datta S., Bandyopadhyay A., Pal P.K.: Application of PCA-based hybrid Taguchi method for correlated multicriteria optimization of submerged arc weld: A case study. International Journal of Advanced Manufacturing Technology 45(3–4), 2009, 276–286. DOI: https://doi.org/10.1007/s00170-009-1976-0
Pang G. K. H, Chu M.: Automated optical inspection of solder paste based on 2.5D visual images. 2009 International Conference on Mechatronics and Automation, Changchun, 2009, 982–987 [http://doi.org/10.1109/ICMA.2009.5246351]. DOI: https://doi.org/10.1109/ICMA.2009.5246351
Perng D. B., Liu H. W., Chen S. H.: A vision-based LED defect auto-recognition system. Nondestructive Testing and Evaluation 29(4), 2014, 315–331. DOI: https://doi.org/10.1080/10589759.2014.941841
Savage R. M., Park H. S., Fan M. S.: Automated inspection of solder joints for surface mount technology. NASA Technical Memorandum 104580, 1993 [http://doi.org/https://ntrs.nasa.gov/citations/19930016948].
Tsai D. M., Huang T. Y.: Automated surface inspection for statistical textures. Image and Vision Computing 21(4), 2003, 307–323. DOI: https://doi.org/10.1016/S0262-8856(03)00007-6
Vanzetti R., Traub A. C.: Combining Soldering with Inspection. IEEE Control Systems Magazine 8(5), 1988, 29–32. DOI: https://doi.org/10.1109/37.7740
Watanabe Y.: Automated optical inspection of surface mount components using 2D machine vision. 15th Annual Conference of IEEE Industrial Electronics 3, 1989, 584–589 [http://doi.org/10.1109/IECON.1989.69697]. DOI: https://doi.org/10.1109/IECON.1989.69697
Wu H. H., Zhang X. M., Kuang Y. C., Lu S. L.: A real-time machine vision system for solder paste inspection. Proceeding of the 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 205–210.
Zhao H., Cheng J., Jin J.: NI vision based automatic optical inspection (AOI) for surface mount devices. Devices and method – 2009 International Conference on Applied Superconductivity and Electromagnetic Devices, 356–360 [http://doi.org/10.1109/ASEMD.2009.5306622]. DOI: https://doi.org/10.1109/ASEMD.2009.5306622
Article Details
Abstract views: 649
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
