PREDICTION MODEL OF PUBLIC HOUSES’ HEATING SYSTEMS: A COMPARISON OF SUPPORT VECTOR MACHINE METHOD AND RANDOM FOREST METHOD
Article Sidebar
Open full text
Issue Vol. 12 No. 3 (2022)
-
ABSORPTION CHARACTERISTICS OF THERMAL RADIATION FOR CARBON DIOXIDE
Jan Kubicki, Krzysztof Kopczyński, Jarosław Młyńczak4-7
-
SWITCH-FILTER ON A RECTANGULAR WAVEGUIDE PARTIALLY FILLED BY DIELECTRIC
Vitaly Pochernyaev, Nataliia Syvkova, Mariia Mahomedova8-11
-
GIANT MAGNETORESISTANCE OBSERVED IN THIN FILM NiFe/Cu/NiFe STRUCTURES
Jakub Kisała, Andrzej Kociubiński, Karolina Czarnacka, Mateusz Gęca12-15
-
EXPANSION OF THE ZONE OF PRACTICAL APPLICATION OF PLC WITH PARALLEL ARCHITECTURE
Sergiy Tymchuk, Oleksiy Piskarev, Oleksandr Miroshnyk, Serhii Halko, Taras Shchur16-19
-
FEATURES OF THE ANGULAR SPEED DYNAMIC MEASUREMENTS WITH THE USE OF AN ENCODER
Vasyl Kukharchuk, Waldemar Wójcik, Sergii Pavlov, Samoil Katsyv, Volodymyr Holodiuk, Oleksandr Reyda, Ainur Kozbakova, Gaukhar Borankulova20-26
-
APPLICATION OF PREDICTIVE MAINTENANCE IN THE PACKAGING PRODUCTION
Bogdan Palchevskyi, Lyubov Krestyanpol27-33
-
PREDICTION MODEL OF PUBLIC HOUSES’ HEATING SYSTEMS: A COMPARISON OF SUPPORT VECTOR MACHINE METHOD AND RANDOM FOREST METHOD
Andrii Perekrest, Vladimir Chenchevoi, Olga Chencheva, Alexandr Kovalenko, Mykhailo Kushch-Zhyrko, Aliya Kalizhanova, Yedilkhan Amirgaliyev34-39
-
NATURAL-SIMULATION MODEL OF PHOTOVOLTAIC STATION GENERATION IN PROCESS OF ELECTRICITY BALANCING IN ELECTRICAL POWER SYSTEM
Petr Lezhniuk, Viacheslav Komar, Iryna Hunko, Daniyar Jarykbassov, Dinara Tussupzhanova, Bakhyt Yeraliyeva, Nazbek Katayev40-45
-
APPLICATION FOR VIBRATION DIAGNOSTICS
Anzhelika Stakhova46-49
-
DEEP NEURAL NETWORKS FOR SKIN LESIONS DIAGNOSTICS
Magdalena Michalska-Ciekańska50-53
-
DYNAMIC AND MATHEMATICAL MODELS OF THE HYDROIMPULSIVE VIBRO-CUTTING DEVICE WITH A PRESSURE PULSE GENERATOR BULT INTO THE RING SPRING
Roman Obertyukh, Andrіі Slabkyі, Leonid Polishchuk, Oleksandr Povstianoi, Saule Kumargazhanova, Maxatbek Satymbekov54-58
-
EXPERT FUZZY SYSTEMS FOR EVALUATION OF INTENSITY OF REACTIVE EDEMA OF SOFT TISSUES IN PATIENTS WITH DIABETES
Liudmyla Shkilniak, Waldemar Wójcik, Sergii Pavlov, Oleg Vlasenko, Tetiana Kanishyna, Irina Khomyuk, Oleh Bezverkhyi, Sofia Dembitska, Orken Mamyrbayev, Aigul Iskakova59-63
-
SIMULATION OF INFORMATION SECURITY RISKS OF AVAILABILITY OF PROJECT DOCUMENTS BASED ON FUZZY LOGIC
Oleksii M. Shushura, Liudmyla A. Asieieva, Oleksiy L. Nedashkivskiy, Yevhen V. Havrylko, Yevheniia O. Moroz, Saule S. Smailova, Magzhan Sarsembayev64-68
-
MANAGEMENT OF THE WORKPLACES BY THE FACILITIES OF OPERATIONS RESEARCH
Nataliia Geseleva, Ganna Proniuk, Olexander Romanyuk, Olga Akimova, Tetiana Troianovska-Korobeynikova, Liudmyla Savytska, Saule Rakhmetullina, Nurbapa Mekebayev69-73
-
MODELING OF LABOR POTENTIAL OF UKRAINE: FORMATION OF KNOWLEDGE BASE
Ivan V. Zayukov, Iryna M. Kobylianska, Alexandr Kobylianskyi, Sofia V. Dembitska74-78
Archives
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
Main Article Content
DOI
Authors
Abstract
Data analysis and predicting play an important role in managing heat-supplying systems. Applying the models of predicting the systems’ parameters is possible for qualitative management, accepting appropriate decisions relating control that will be aimed at increasing energy efficiency and decreasing the amount of the consumed power source, diagnosing and defining non-typical processes in the functioning of the systems. The article deals with comparing two methods of ma-chine learning: random forest (RF) and support vector machine (SVM) for predicting the temperature of the heat-carrying agent in the heating system based on the data of electronic weather-dependent controller. The authors use the following parameters to compare the models: accuracy, source cost and the opportunity to interpret the results and non-obvious interrelations. The time spent for defining the optimal hyperparameters and conducting the SVM model training is deter-mined to exceed significantly the data of the RF parameter despite the close meanings of the root mean square error (RMSE). The change from 15-min data to once-a-minute ones is done to improve the RF model accuracy. RMSE of the RF model on the test data equals 0.41°С. The article studies the importance of the contribution of variables to the prediction accuracy.
Keywords:
References
Ahmad M. V. et al.: Tree-based ensemble methods for predicting PV power generation and their comparison with support vector regression. Energy 164, 2018, 465–474. DOI: https://doi.org/10.1016/j.energy.2018.08.207
Ahmad, M. V. et al.: Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees. Journal of Cleaner Production 203, 2018, 810–821. DOI: https://doi.org/10.1016/j.jclepro.2018.08.207
Ahmad M. W. et al.: Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption. Energy and Buildings 147, 2017, 77–89. DOI: https://doi.org/10.1016/j.enbuild.2017.04.038
Azarov A. D. et al.: Class of numerical systems for pipe-line bit sequential development of multiple optoelectronic data streams. Proc. SPIE 4425, 2001, 406-409. DOI: https://doi.org/10.1117/12.429761
Azarov A.D. et al.: Static and dynamic characteristics of the self-calibrating multibit ADC analog components. Proc. SPIE 8698, 2012, 86980N. DOI: https://doi.org/10.1117/12.2019737
Breiman L.: Out-of-bag estimation. Tech. rep. University of California, 1996 [https://www.stat.berkeley.edu/~breiman/OOBestimation.pdf].
Breiman L.: Random Forests. Machine Learning 45(1), 2001, 5–32. DOI: https://doi.org/10.1023/A:1010933404324
Dong B. et al.: Applying support vector machines to predict building energy consumption in tropical region. Energy and Buildings 37(5), 2005, 545–553. DOI: https://doi.org/10.1016/j.enbuild.2004.09.009
Esen H. et al.: Modelling of a new solar air heater through least-squares support vector machines. Expert Systems with Applications 36(7), 2009, 10673–1068. DOI: https://doi.org/10.1016/j.eswa.2009.02.045
Geng Y. et al.: Building energy performance diagnosis using energy bills and weather data. Energy and Buildings 172, 2018, 181–191. DOI: https://doi.org/10.1016/j.enbuild.2018.04.047
Kaczmarek C. et al.: Measurement of pressure sensitivity of modal birefringence of birefringent optical fibers using a Sagnac interferometer. Optica Applicata 45(1), 2015, 5–14. DOI: https://doi.org/10.1109/ICSENS.2015.7370173
Kukharchuk V. V. et al.: Method of magneto-elastic control of mechanic rigidity in assemblies of hydropower units. Proc. SPIE 10445, 2017, 104456A. DOI: https://doi.org/10.1117/12.2280974
Kukharchuk V. V. et al.: Noncontact method of temperature measurement based on the phenomenon of the luminophor temperature decreasing. Proc. SPIE 10031, 2016, 100312F. DOI: https://doi.org/10.1117/12.2249358
Kukharchuk V. V. et al.: Discrete wavelet transformation in spectral analysis of vibration processes at hydropower units. Przegląd Elektrotechniczny 93(5), 2017, 65–68.
Kvyetnyy R. et al.: Blur recognition using second fundamental form of image surface. Proc. SPIE 9816, 2015, 98161A. DOI: https://doi.org/10.1117/12.2229103
Kvyetnyy R. et al.: Method of image texture seg-mentation using Laws' energy measures. Proc. SPIE 10445, 2017, 1044561. DOI: https://doi.org/10.1117/12.2280891
Kvyetnyy R. et al.: Modification of fractal coding algorithm by a combination of modern technologies and parallel computations. Proc. SPIE 9816, 2015, 98161R. DOI: https://doi.org/10.1117/12.2229009
Osadchuk A. et al.: Pressure transducer of the on the basis of reactive properties of transistor structure with negative resistance. Proc. SPIE 9816, 2015, 98161C. DOI: https://doi.org/10.1117/12.2229211
Osadchuk O. et al.: The Generator of Superhigh Frequencies on the Basis Silicon Germanium Heterojunction Bipolar Transistors. 13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET), 2016, 336 – 338. DOI: https://doi.org/10.1109/TCSET.2016.7452051
Paluszyska A.: Structure mining and knowledge extraction from random forest with applications to The Cancer Genome Atlas project. 2017. [https://rawgit.com/geneticsMiNIng/BlackBoxOpener/master/randomForestExplainer_Master_thesis.pdf].
Parfenenko Yu. V. et al.: Prediction the heat consumption of social and public sector buildings using neural networks. Radio Electronics, Computer Science, Control 2, 2015, 41–46. DOI: https://doi.org/10.15588/1607-3274-2015-2-5
Perekrest A. et al.: Key Performance Indicators Assessment Methodology Principles Adaptation for Heating Systems of Administrative and Residential Buildings. IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP), 2020, 1–4. DOI: https://doi.org/10.1109/PAEP49887.2020.9240784
Perekrest A. et al.: Complex information and technical solutions for energy management of municipal energetics. Proc. SPIE 10445, 2017, 1044567. DOI: https://doi.org/10.1117/12.2280962
Ruiz L. G. B. et al.: Energy consumption forecasting based on Elman neural networks with evolutive optimization. Expert Systems with Applications 92, 2018, 380–389. DOI: https://doi.org/10.1016/j.eswa.2017.09.059
Smolarz A. et al.: Fuzzy controller for a lean premixed burner. Przegląd Elektrotechniczny 86(7), 2010, 287–289.
Vapnik V., Chapelle O.: Bounds on error expectation for suport vector machines. Neural Computation 12 (9), 2000, 2013–2036. DOI: https://doi.org/10.1162/089976600300015042
Vedmitskyi Y. G. et al.: New non-system physical quantities for vibration monitoring of transient processes at hydropower facilities, integral vibratory accelerations. Przegląd Elektrotechniczny 93(3), 2017, 69–72. DOI: https://doi.org/10.15199/48.2017.03.17
Wei Y. et al.: A review of data-driven approaches for prediction and classification of building energy consumption. Renewable and Sustainable Energy Reviews 82, 2018, 1027–1047. DOI: https://doi.org/10.1016/j.rser.2017.09.108
Wójcik W. et al.: Concept of application of signals from fiber-optic system for flame monitoring to control separate pulverized coal burner. Proc. SPIE 5484, 2004, 427–431. DOI: https://doi.org/10.1117/12.569041
Wójcik W. et al.: Vision based monitoring of coal flames source. Przegląd Elektrotechniczny 84(3), 2008, 241–243.
Article Details
Abstract views: 443
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
