APPLICATION OF PREDICTIVE MAINTENANCE IN THE PACKAGING PRODUCTION
Article Sidebar
Open full text
Issue Vol. 12 No. 3 (2022)
-
ABSORPTION CHARACTERISTICS OF THERMAL RADIATION FOR CARBON DIOXIDE
Jan Kubicki, Krzysztof Kopczyński, Jarosław Młyńczak4-7
-
SWITCH-FILTER ON A RECTANGULAR WAVEGUIDE PARTIALLY FILLED BY DIELECTRIC
Vitaly Pochernyaev, Nataliia Syvkova, Mariia Mahomedova8-11
-
GIANT MAGNETORESISTANCE OBSERVED IN THIN FILM NiFe/Cu/NiFe STRUCTURES
Jakub Kisała, Andrzej Kociubiński, Karolina Czarnacka, Mateusz Gęca12-15
-
EXPANSION OF THE ZONE OF PRACTICAL APPLICATION OF PLC WITH PARALLEL ARCHITECTURE
Sergiy Tymchuk, Oleksiy Piskarev, Oleksandr Miroshnyk, Serhii Halko, Taras Shchur16-19
-
FEATURES OF THE ANGULAR SPEED DYNAMIC MEASUREMENTS WITH THE USE OF AN ENCODER
Vasyl Kukharchuk, Waldemar Wójcik, Sergii Pavlov, Samoil Katsyv, Volodymyr Holodiuk, Oleksandr Reyda, Ainur Kozbakova, Gaukhar Borankulova20-26
-
APPLICATION OF PREDICTIVE MAINTENANCE IN THE PACKAGING PRODUCTION
Bogdan Palchevskyi, Lyubov Krestyanpol27-33
-
PREDICTION MODEL OF PUBLIC HOUSES’ HEATING SYSTEMS: A COMPARISON OF SUPPORT VECTOR MACHINE METHOD AND RANDOM FOREST METHOD
Andrii Perekrest, Vladimir Chenchevoi, Olga Chencheva, Alexandr Kovalenko, Mykhailo Kushch-Zhyrko, Aliya Kalizhanova, Yedilkhan Amirgaliyev34-39
-
NATURAL-SIMULATION MODEL OF PHOTOVOLTAIC STATION GENERATION IN PROCESS OF ELECTRICITY BALANCING IN ELECTRICAL POWER SYSTEM
Petr Lezhniuk, Viacheslav Komar, Iryna Hunko, Daniyar Jarykbassov, Dinara Tussupzhanova, Bakhyt Yeraliyeva, Nazbek Katayev40-45
-
APPLICATION FOR VIBRATION DIAGNOSTICS
Anzhelika Stakhova46-49
-
DEEP NEURAL NETWORKS FOR SKIN LESIONS DIAGNOSTICS
Magdalena Michalska-Ciekańska50-53
-
DYNAMIC AND MATHEMATICAL MODELS OF THE HYDROIMPULSIVE VIBRO-CUTTING DEVICE WITH A PRESSURE PULSE GENERATOR BULT INTO THE RING SPRING
Roman Obertyukh, Andrіі Slabkyі, Leonid Polishchuk, Oleksandr Povstianoi, Saule Kumargazhanova, Maxatbek Satymbekov54-58
-
EXPERT FUZZY SYSTEMS FOR EVALUATION OF INTENSITY OF REACTIVE EDEMA OF SOFT TISSUES IN PATIENTS WITH DIABETES
Liudmyla Shkilniak, Waldemar Wójcik, Sergii Pavlov, Oleg Vlasenko, Tetiana Kanishyna, Irina Khomyuk, Oleh Bezverkhyi, Sofia Dembitska, Orken Mamyrbayev, Aigul Iskakova59-63
-
SIMULATION OF INFORMATION SECURITY RISKS OF AVAILABILITY OF PROJECT DOCUMENTS BASED ON FUZZY LOGIC
Oleksii M. Shushura, Liudmyla A. Asieieva, Oleksiy L. Nedashkivskiy, Yevhen V. Havrylko, Yevheniia O. Moroz, Saule S. Smailova, Magzhan Sarsembayev64-68
-
MANAGEMENT OF THE WORKPLACES BY THE FACILITIES OF OPERATIONS RESEARCH
Nataliia Geseleva, Ganna Proniuk, Olexander Romanyuk, Olga Akimova, Tetiana Troianovska-Korobeynikova, Liudmyla Savytska, Saule Rakhmetullina, Nurbapa Mekebayev69-73
-
MODELING OF LABOR POTENTIAL OF UKRAINE: FORMATION OF KNOWLEDGE BASE
Ivan V. Zayukov, Iryna M. Kobylianska, Alexandr Kobylianskyi, Sofia V. Dembitska74-78
Archives
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
Main Article Content
DOI
Authors
Abstract
To solve the problem of predictive maintenance for packaging manufacturing, we propose a hybrid model that optimizes the maintenance plan. The model is based on monitoring the state of many components of a multi-position automatic packaging machine and makes it possible to predict their future malfunctions and estimate the remaining service life of the equipment. The effectiveness of the proposed solution is demonstrated with the help of a real industrial multi-position machine for the automatic production of film bags and packaging of paste in them. The methodology is based on the analysis of diagnostic information using an expert system.
Keywords:
References
Becker T., Wagner D.: Identification of Key Machines in Complex Production Networks. Procedia CIRP 41, 2016, 69–74. DOI: https://doi.org/10.1016/j.procir.2015.12.006
Chaoyang G., Fenli G.: Embedded fault diagnosis expert system on weapon equipment. International Journal of Advanced Network, Monitoring and Controls 1(2), 2016, 25–33.
Dekker R. et al.: A review of multi-component maintenance models with economic dependence. Mathematical Methods of Operations Research 45, 1997, 411–435. DOI: https://doi.org/10.1007/BF01194788
Erik L. J.: Expert system for diagnosing computer numerically controlled machines: a case-study. Computers in Industry 32(3), 1997, 233–248. DOI: https://doi.org/10.1016/S0166-3615(96)00077-2
He Q., Li X. Q.: Management of knowledge base of expert system for fault diagnosis of rotating machinery. Applied Mechanics and Materials 44–47, 2010, 2935–2939. DOI: https://doi.org/10.4028/www.scientific.net/AMM.44-47.2935
IEC 60300-3-1:2003, Dependability management – Part 3-1: Application guide – Analysis techniques for dependability – Guide on methodology.
ISO 17359:2003(E), Condition monitoring and diagnostics of machines – General guidelines.
Lee J., Bagheri B., Kao H.-A.: A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters 3, 2015, 18–23. DOI: https://doi.org/10.1016/j.mfglet.2014.12.001
Majstorovic V. D.: Expert systems for diagnosis and maintenance: The state-of-the-art. Computers in Industry 15(1–2), 1990, 43–68. DOI: https://doi.org/10.1016/0166-3615(90)90084-3
Mobley R. K.: An Introduction to Predictive Maintenance. Elsevier Science, 2002. DOI: https://doi.org/10.1016/B978-075067531-4/50006-3
Mourtzis D., Vlachou E., Milas N.: Industrial Big Data as a Result of IoT Adoption in Manufacturing. Procedia CIRP 55, 2016, 290–295. DOI: https://doi.org/10.1016/j.procir.2016.07.038
Olatunbosun A., Arulogunol O.: An expert system based equipment diagnostics. Journal of Applied Science, Engineering and Technology 5, 2005, 63–70. DOI: https://doi.org/10.4314/jaset.v5i1.38299
Palchevskyi B., Krestyanpol L.: The Use of the “Digital Twin” Concept for Proactive Diagnosis of Technological Packaging Systems. Babichev S., Peleshko D., Vynokurova O. (eds): Data Stream Mining & Processing. Communications in Computer and Information Science 1158, Springer, Cham. 2020. DOI: https://doi.org/10.1007/978-3-030-61656-4_29
Palchevskyi B., Krestyanpol L.: Strategy of Construction of Intellectual Production Systems. IEEE Third International Conference on Data Stream Mining & Processing (DSMP), 2020, 362–365. DOI: https://doi.org/10.1109/DSMP47368.2020.9204190
Palchevskyi B.: Improving the efficiency of intelectual packaging systems. Technological complexes 15, 2018, 4–14.
Sang G. M., Xu L., de Vrieze P.: Simplifying Big Data analytics systems with a reference architecture. Camarinha-Matos L., Afsarmanesh H., Fornasiero R. (eds): Collaboration in a Data-Rich World. PRO-VE 2017. IFIP Advances in Information and Communication Technology 506. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-65151-4_23
Tobon-Mejiaab D. A., Medjahera K., Zerhounia N.: CNC machine tool's wear diagnostic and prognostic by using dynamic Bayesian networks. Mechanical Systems and Signal Processing 28, 2012, 167–182. DOI: https://doi.org/10.1016/j.ymssp.2011.10.018
Van Horenbeek A., Pintelon L., Muchiri P.: Maintenance optimization models and criteria. International Journal of System Assurance Engineering and Management 1, 2010, 189–200. DOI: https://doi.org/10.1007/s13198-011-0045-x
Wang H.: A survey of maintenance policies of deteriorating systems. European Journal of Operational Research.Volume 139(3), 2002, 469–489. DOI: https://doi.org/10.1016/S0377-2217(01)00197-7
Wu W., Hu J., Zhang J.: Prognostics of Machine Health Condition Using an Improved ARIMA-Based Prediction Method. Second IEEE Conference on Industrial Electronics and Applications ICIEA, 2007, 1062–1067. DOI: https://doi.org/10.1109/ICIEA.2007.4318571
Zhang Z., Li Z., Zhao C.: Research on condition monitoring and fault diagnosis of intelligent copper ball production lines based on big data. IET Collaborative Intelligent Manufacturing 4(1), 2022, 45–57. DOI: https://doi.org/10.1049/cim2.12043
Article Details
Abstract views: 405
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
