ELABORATION AND RESEARCH OF A MODEL OF OPTIMAL PRODUCTION AND DEVELOPMENT OF INDUSTRIAL SYSTEMS TAKING INTO ACCOUNT THE USE OF THE EXTERNAL RESOURCES
Dmytro Hryshyn
dmitriygrishin2@gmail.comVinnytsia National Technical University (Ukraine)
http://orcid.org/0000-0001-5397-3592
Taisa Borovska
Vinnytsia National Technical University (Ukraine)
http://orcid.org/0000-0002-5308-4872
Aliya Kalizhanova
University of Power Engineering and Telecommunications; Institute of Information and Computational Technologies MES CS RK (Kazakhstan)
http://orcid.org/0000-0002-5979-9756
Abstract
The problem of optimization of investment projects related to the development of modern production systems is considered. The tasks of managing of operation and development of production systems considering external resources – the synthesis and analysis of optimal credit strategies – are posed and solved. An analysis of analogs – solutions of the variational problem of optimal development, the disadvantage of which is the difficulty of obtaining information about the state of production and the external environment, was carried out. The new solution is based on the resource approach, when external resources are taken into account in the cost of production resources. A generalized model of optimal development is used, in which the planned period of the investment project is divided into intervals. At the beginning of each interval, the optimal development strategy is adjusted taking into account the clarification of information about the future state of the active environment: actions of competitors, consumers, world markets. To determine the optimal amount and optimal distribution of credits between subsystems, the maxima of the criterion – the parameterized function of the system's efficiency – are determined at each interval. A new model has been developed based on the model of optimal development, which takes into account the use of external resources, such as loans. The method of including an external resource in the development function and the production function is considered. Examples of modeling are given.
Keywords:
optimal aggregation, production function, development function, external resource, simulation modelingReferences
Avrunin O. et al.: Classification of CT-brain slices based on local histograms. Proc. of SPIE 9816, 2015, 98161J.
DOI: https://doi.org/10.1117/12.2229040
Google Scholar
Azarova A.: Information Technologies and Neural Network Means for Building the Complex Goal Program „Improving the Management of Intellectual Capital”. Lecture Notes on Data Engineering and Communications Technologies 77, 2022, 534–547.
DOI: https://doi.org/10.1007/978-3-030-82014-5_36
Google Scholar
Bellman R. E. et al.: Certain problems of mathematical control theory. Publishing House of Foreign Literature, Moscow 1963.
Google Scholar
Bellman R. E., Kalaba R. E.: Dynamic programming and modern control theory. Academic, New York 1965.
Google Scholar
Bertsekas D. P.: Dynamic programming and Optical Control. Athena Scientific, 2017.
Google Scholar
Borovska T, Hryshyn D.: Comparative Analysis of Methods for Optimizing Production Systems based on Hamiltonian and the Method of Optimal Aggregation. IEEE 16th International Conference on Computer Sciences and Information Technologies (CSIT), 1, 2021, 345–348 [http://doi.org/10.1109/CSIT52700.2021.9648626].
DOI: https://doi.org/10.1109/CSIT52700.2021.9648626
Google Scholar
Borovska T. et al.: Searchless Intelligent System of Modern Production Control. IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT), Zbarazh, Ukraine, 2020, 291–296 [http://doi.org/10.1109/CSIT49958.2020.9321842].
Google Scholar
Borovska T.: Generalized model of optimal development, based on the integration of production and development subsystems. XII International Scientific and Technical Conference „Computer science and information technologies” CSIT’2017, Lviv, Ukraine, 2017, 446–449, 17353622 [http://doi.org/10.1109/STC-CSIT.2017.8098826].
DOI: https://doi.org/10.1109/STC-CSIT.2017.8098826
Google Scholar
Borovska T. et al.: Intelligent System of Modern Production Control Based on the Methodology of Optimal Aggregation, 2021, 291–296 [http://doi.org/10.1109/CSIT49958.2020.9321842].
DOI: https://doi.org/10.1109/CSIT49958.2020.9321842
Google Scholar
Borovska T. et al: Adaptive production control system based on optimal aggregation methods. Proc. of SPIE 10808, 2018, 108086O [http://doi.org/10.1117/12.2501520].
DOI: https://doi.org/10.1117/12.2501520
Google Scholar
Borovska T. et al.: Mathematical models of production systems development based on optimal aggregation methodology. Proc. of SPIE 10445, 2017, 104452P [http://doi.org/10.1117/12.2281222].
DOI: https://doi.org/10.1117/12.2281222
Google Scholar
Chertovskoy V., Tsehanovsky V.: Optimal model of manufacturing control system. Journal of Physics Conference Series 1864(1), 2021, 012096 [http://doi.org/10.1088/1742-6596/1864/1/012096].
DOI: https://doi.org/10.1088/1742-6596/1864/1/012096
Google Scholar
Das S. et al.: A production inventory model with partial trade credit policy and reliability. Alexandria Engineering Journal 60(1), 2021, 1325–1338 [http://doi.org/10.1016/j.aej.2020.10.054].
DOI: https://doi.org/10.1016/j.aej.2020.10.054
Google Scholar
Denardo E. V.: Dynamic Programming: Models and applications. Dover Publications 2003.
Google Scholar
Fagin R., Kumar R., Sivakumar D.: Efficient similarity search and classification via rank aggregation. ACM SIGMOD International Conference on Management of Data, SIGMOD 2003 [http://doi.org/10.1145/872794.872795].
DOI: https://doi.org/10.1145/872757.872795
Google Scholar
Forrester J.: Fundamentals of cybernetics of the enterprise (Industrial dynamics). Progress, Мoscow 1971.
Google Scholar
Koulouris A. et al.: Applications of process and digital twin models for production simulation and scheduling in the manufacturing of food ingredients and products. Food and Bioproducts Processing 126, 2021, 317–333.
DOI: https://doi.org/10.1016/j.fbp.2021.01.016
Google Scholar
Leggatt T. W.: The evolution of Industrial Systems. Croom Helm, London 1985.
Google Scholar
Leontiev V.: Theoretical assumptions and nonobservable facts. Economy, ideology, politics 9, 1972, 15.
Google Scholar
Mesarovic M., Takahara Y.: General systems theory: mathematical foundations. Academic Press, New York, San Francisco, London 1975.
Google Scholar
Mukha Ap. A.: Control of the process of complex engineering systems and processes development. Characteristic features of FMEA-analysis application. Mathematical machine and systems 2, 2012, 168–176.
Google Scholar
Murayama T., Devis P.: Optimal aggregation of noisy observations. Journal of Physics: Conference Series 233(1), 2003, 301–312 [http://doi.org/10.1145/872794.872795].
DOI: https://doi.org/10.1145/872794.872795
Google Scholar
Opoitsev V. I.: Equilibrium and stability in models of collective behavior. Mir, Moscow 1977.
Google Scholar
Raymo M. et al.: A New Method for Food Production Analysis and Optimization Applied to Citrus Industry. Computer Aided Chemical Engineering 48, 2020, 2005–2010.
DOI: https://doi.org/10.1016/B978-0-12-823377-1.50335-9
Google Scholar
Romanyuk N. et al.: Microfacet distribution function for physically based bidirectional reflectance distribution functions. Proc. of SPIE 8698, 2012, 86980L [http://doi.org/10.1117/12.2019338].
DOI: https://doi.org/10.1117/12.2019338
Google Scholar
Romanyuk O. et al.: Method of anti-aliasing with the use of the new pixel model. Proc. of SPIE 9816, 2015, 981617 [http://doi.org/10.1117/12.2229013].
DOI: https://doi.org/10.1117/12.2229013
Google Scholar
Romanyuk S. et al.: New method to control color intensity for antialiasing. International Siberian Conference Control and Comm. – SIBCON, 2015 [http://doi.org/10.1109/SIBCON.2015.7147194].
DOI: https://doi.org/10.1109/SIBCON.2015.7147194
Google Scholar
Rüttimann B., Stockli M.: Going beyond triviality: The Toyota production system-lean manufacturing beyond Muda and Kaizen. J. Serv. Sci. Manag. 9, 2016, 140–149 [http://doi.org/10.4236/jssm.2016.92018].
DOI: https://doi.org/10.4236/jssm.2016.92018
Google Scholar
Rüttimann B.: Introduction to Modern Manufacturing Theory. Springer International Publishing AG 2018 [http://doi.org/10.1007/978-3-319-58601-4].
DOI: https://doi.org/10.1007/978-3-319-58601-4
Google Scholar
Skrynkovskyy R. et al.: Improvement of the express diagnostics of the production activity of the enterprise taking into account the method of determining the optimal production programs in the operational management system. Technology Audit and Production Reserves 6(44), 2018, 4–10 [http://doi.org/10.15587/2312-8372.2018.147968].
DOI: https://doi.org/10.15587/2312-8372.2018.147968
Google Scholar
Skrynkovskyy R. et al.: Improvement of the model of the innovative development of the production system of industrial enterprises. Reports on Research Projects 1/4(45), 2019, 53.
DOI: https://doi.org/10.15587/2312-8372.2019.159227
Google Scholar
Taylor C.: Dynamic programming and the curses of dimensionality. Applications of dynamic programming to agricultural decision problems. CRC Press, 2019.
DOI: https://doi.org/10.1201/9780429040917
Google Scholar
Tsybakov B.: Optimal Rates of Aggregation, Statistical Learning Theory and Stochastic Optimization. In: Saint-Flour E. D. et al.: Statistical learning theory and stochastic optimization: École d'eté de probabilités de Saint-Flour XXXI – 2001. 2004, 54–69.
Google Scholar
Weijia D., Ginger Z., Jungmin L.: Optimal Aggregation of Consumer Ratings. NBER Working Paper No. 18567, 12–23.
Google Scholar
Xinxin L.: Self-Selection and Information Role of Online Product Reviews. Information Systems Research 19(4), 2012, 56–64.
Google Scholar
Authors
Dmytro Hryshyndmitriygrishin2@gmail.com
Vinnytsia National Technical University Ukraine
http://orcid.org/0000-0001-5397-3592
Authors
Taisa BorovskaVinnytsia National Technical University Ukraine
http://orcid.org/0000-0002-5308-4872
Authors
Aliya KalizhanovaUniversity of Power Engineering and Telecommunications; Institute of Information and Computational Technologies MES CS RK Kazakhstan
http://orcid.org/0000-0002-5979-9756
Statistics
Abstract views: 164PDF downloads: 115
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Waldemar Wójcik, Aliya Kalizhanova, Gulzhan Kashaganova, Ainur Kozbakova, Zhalau Aitkulov, Zhassulan Orazbekov, RESEARCH OF PARAMETERS OF FIBER-OPTICAL MEASURING SYSTEMS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 9 No. 2 (2019)
- Waldemar Wójcik, Maksat Kalimoldayev, Yedilkhan Amirgaliyev, Murat Kunelbayev, Aliya Kalizhanova, Ainur Kozbakova, Timur Merembayev, EXERGY ANALYSIS OF DOUBLE-CIRCUIT FLAT SOLAR COLLECTOR WITH THERMOSYPHON CIRCULATION , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 9 No. 3 (2019)
- Kostyantyn Ovchynnykov, Oleksandr Vasilevskyi, Volodymyr Sevastianov, Yurii Polievoda, Aliya Kalizhanova, Bakhyt Yeraliyeva, DETERMINATION OF THE OPTIMAL FREQUENCY OF THE PRIMARY MEASURING TRANSDUCER OF THE THICKNESS OF DIELECTRIC COATINGS OF METAL SURFACES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 2 (2022)
- Andrii Perekrest, Vladimir Chenchevoi, Olga Chencheva, Alexandr Kovalenko, Mykhailo Kushch-Zhyrko, Aliya Kalizhanova, Yedilkhan Amirgaliyev, PREDICTION MODEL OF PUBLIC HOUSES’ HEATING SYSTEMS: A COMPARISON OF SUPPORT VECTOR MACHINE METHOD AND RANDOM FOREST METHOD , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 3 (2022)
- Olena Kolesnikova, Olena Vysotska, Anna Potapenko, Anastasia Radchenko, Anna Trunova, Natalia Virstyuk, Liudmyla Vasylevska-Skupa, Aliya Kalizhanova, Nazerka Mukanova, CARDIOMETABOLIC RISK PREDICTION IN PATIENTS WITH NON-ALCOHOLIC FATTY LIVER DISEASE COMBINED WITH SUBCLINICAL HYPOTHYROIDISM , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 2 (2023)
- Igor Palamarchuk, Vladyslav Palamarchuk, Vadim Paziuk, Ruslan Hulevych, Aliya Kalizhanova, Magzhan Sarsembayev, ANALYSIS OF POWER AND ENERGY PARAMETERS OF THE CONVEYOR INFRARED DRYER OF OIL-CONTAINING RAW MATERIALS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 2 (2023)
- Oleksandr Romanyuk, Yevhen Zavalniuk, Sergii Pavlov, Roman Chekhmestruk, Zlata Bondarenko, Tetiana Koval, Aliya Kalizhanova, Aigul Iskakova, NEW SURFACE REFLECTANCE MODEL WITH THE COMBINATION OF TWO CUBIC FUNCTIONS USAGE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 3 (2023)
- Gregory Tymchyk, Volodymyr Skytsiouk, Tatiana Klotchko, Roman Akselrod, Valerii Shenfeld, Aliya Kalizhanova, Didar Yedilkhan, Gaukhar Borankulova, TONTOR ZONES MODEL FOR AUTOMATIVE OBJECT MONITORING , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 2 (2023)
- Iryna Segeda, Vladyslav Kotsiuba, Oleksii Shushura, Viktoriia Bokovets, Natalia Koval, Aliya Kalizhanova, DECENTRALIZED PLATFORM FOR FINANCING CHARITY PROJECTS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 14 No. 3 (2024)