CARDIOMETABOLIC RISK PREDICTION IN PATIENTS WITH NON-ALCOHOLIC FATTY LIVER DISEASE COMBINED WITH SUBCLINICAL HYPOTHYROIDISM
Article Sidebar
Open full text
Issue Vol. 13 No. 2 (2023)
-
NOVEL HYBRID ALGORITHM USING CONVOLUTIONAL AUTOENCODER WITH SVM FOR ELECTRICAL IMPEDANCE TOMOGRAPHY AND ULTRASOUND COMPUTED TOMOGRAPHY
Łukasz Maciura, Dariusz Wójcik, Tomasz Rymarczyk, Krzysztof Król4-9
-
ANALYSIS OF POWER AND ENERGY PARAMETERS OF THE CONVEYOR INFRARED DRYER OF OIL-CONTAINING RAW MATERIALS
Igor Palamarchuk, Vladyslav Palamarchuk, Vadim Paziuk, Ruslan Hulevych, Aliya Kalizhanova, Magzhan Sarsembayev10-14
-
OPTIMIZATION OF RESOURCE ALLOCATION, EXPOSURE TIME AND ROTARY SPEED OF INCUBATIVE EGGS
Dmytro Milenin, Mykola Lysychenko, Andriy Milenin, Leonid Koval, Saltanat Amirgaliyeva, Maxatbek Satymbekov, Saltanat Adikanova15-19
-
DEVELOPMENT OF AN APPLICATION FOR THE THERMAL PROCESSING OF OIL SLIME IN THE INDUSTRIAL OIL AND GAS SECTOR
Gulnar Balakayeva, Gaukhar Kalmenova, Dauren Darkenbayev, Christofer Phillips20-26
-
AUTOMATED DEFINITION OF THE DISCRETE ELEMENTS INTERACTIONS IN WORKSPACE OF EQUIPMENT
Gregory Tymchyk, Volodymyr Skytsiouk, Tatiana Klotchko, Leonid Polishchuk, Anatolii Hrytsak, Saule Rakhmetullina, Beibut Amirgaliyev27-35
-
TONTOR ZONES MODEL FOR AUTOMATIVE OBJECT MONITORING
Gregory Tymchyk, Volodymyr Skytsiouk, Tatiana Klotchko, Roman Akselrod, Valerii Shenfeld, Aliya Kalizhanova, Didar Yedilkhan, Gaukhar Borankulova36-43
-
THEORETICAL AND EXPERIMENTAL SUBSTANTIATION OF THE EXTRACTION PROCESS WITH THINNING BIMETALLIC TUBULAR ELEMENTS OF DISSIMILAR METALS AND ALLOYS
Viacheslav Titov, Olexandr Mozghovyi, Ruslan Borys, Mykola Bogomolov, Yedilkhan Amirgaliyev, Zhalau Aitkulov44-49
-
THE APPLICATION OF MACHINE LEARNING ON THE SENSORS OF SMARTPHONES TO DETECT FALLS IN REAL-TIME
Achraf Benba, Mouna Akki, Sara Sandabad50-55
-
CONVOLUTIONAL NEURAL NETWORKS FOR EARLY COMPUTER DIAGNOSIS OF CHILD DYSPLASIA
Yosyp Bilynsky, Aleksandr Nikolskyy, Viktor Revenok, Vasyl Pogorilyi, Saule Smailova, Oksana Voloshina, Saule Kumargazhanova56-63
-
CARDIOMETABOLIC RISK PREDICTION IN PATIENTS WITH NON-ALCOHOLIC FATTY LIVER DISEASE COMBINED WITH SUBCLINICAL HYPOTHYROIDISM
Olena Kolesnikova, Olena Vysotska, Anna Potapenko, Anastasia Radchenko, Anna Trunova, Natalia Virstyuk, Liudmyla Vasylevska-Skupa, Aliya Kalizhanova, Nazerka Mukanova64-68
-
LOCAL DIFFERENCE THRESHOLD LEARNING IN FILTERING NORMAL WHITE NOISE
Leonid Timchenko, Natalia Kokriatskaia, Volodymyr Tverdomed, Natalia Kalashnik, Iryna Shvarts, Vladyslav Plisenko, Dmytro Zhuk, Saule Kumargazhanova69-73
-
MODELING AND ANALYSIS OF THE CHARACTERISTICS OF MULTICHANNEL AND MULTI-NODE COMPUTER NETWORKS WITH PRIORITY SERVICE
Zakir Nasib Huseynov, Mahil Isa Mammadov, Togrul Atabay Ismayilov74-77
-
STATISTICAL METHODS FOR EVALUATING EXPERIMENTAL DATA ON THE USE OF MATHEMATICAL COMPETENCIES IN STUDY FOR A RESILIENT ECONOMY
Vira Petruk, Olena Prozor, Yuliia Sabadosh, Iryna Baranovska, Maksim Palii, Yevheniia Moroz, Saule Kumargazhanova, Dinara Mussayeva78-85
-
SIMULATION OF THE INFLUENCE OF INVESTMENT AND INNOVATION ACTIVITIES ON ENSURING THE INTERNATIONAL COMPETITIVENESS OF COUNTRIES
Olena Liutak, Olena Baula, Anatolii Tkachuk86-92
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
One of the most common diseases of our time is non-alcoholic fatty liver disease (NAFLD). Recently published research results indicate that patients with NAFLD along with traditional risk factors for cardiovascular diseases (CVD) have "new" risk factors such as endothelial dysfunction (ED), carotid intima-media thickness (CIMT), an increase in the CRP level, as well as risk factors combined into the Framingham scale. It is also known that combination of NAFLD with subclinical hypothyroidism (SH) forms an abnormal metabolic phenotype, which is associated with cardiometabolic risk factors. The study of cardiometabolic predictors and vascular markers in patients with NAFLD in combination with SH will provide an opportunity to improve the strategy of cardiovascular events prevention in such comorbid patients.
Keywords:
References
Bano A., Chaker L., Plompen E. P. C., et al.: Thyroid Function and the Risk of Nonalcoholic Fatty Liver Disease: The Rotterdam Study. J Clin Endocrinol Metab. 101(8), 2016, 3204–3211. DOI: https://doi.org/10.1210/jc.2016-1300
Belyalov F. I.: Prognozirovaniye i shkaly v kardiologii 2ye-izd. MEDPRESS-inform, Moscow 2018.
Belialov F. I.: Risk prediction scores of diseases. Complex Issues of Cardiovascular Diseases 7(1), 2018, 84–93 [http://doi.org/10.17802/2306-1278-2018-7-1-84-93]. DOI: https://doi.org/10.17802/2306-1278-2018-7-1-84-93
Georgiyants M., Khvysyuk O., Boguslavskaуa N. et al.: Development of a mathematical model for predicting postoperative pain among patients with limb injuries. Eastern-European Journal of Enterprise Technologies 2, N4(86), 2017, 4–9 [http://doi.org/10.15587/1729-4061.2017.95157]. DOI: https://doi.org/10.15587/1729-4061.2017.95157
Graham I., Atar D., Borch-Johnsen K. et al.: European guidelines on cardiovascular disease prevention in clinical practice: full text. Eur. J. Cardiovasc. Prev. Rehabil. 14, 2007, S1–S113.
Kojuri J., Boostani R., Dehghani P., Nowroozipour F., Saki N.: Prediction of acute myocardial infarction with artificial neural networks in patients with nondiagnostic electrocardiogram. Journal of Cardiovascular Disease Research. 6(2), 2015, 51–60. DOI: https://doi.org/10.5530/jcdr.2015.2.2
Kolesnikova E. V.: Sovremennyy patsiyent s zabolevaniyem pechenii patologiyey serdechno-sosudistoy sistemy: kakoy vybor sdelat? Contemporary gastroenterology 2(76), 2014, 85–94.
Kolesnikova O. V., Nemtsova V. D.: Effect of preventive measures for major metabolic parameters in patients with non-alcoholic fatty liver disease and cardiovascular risk. The ESC Textbook of Preventive Cardiology. Comprehensive, practical, and the official textbook of the European Association for Cardiovascular Prevention and Rehabilitation. Oxford University press, 2015.
Koval S. M., Snihurska I. O., Vysotska O. et al.: Prognosis of essential hypertension progression in patients with abdominal obesity. Wójcik W., Pavlov S., Kalimoldayev, M. (Eds.): Information Technology in Medical Diagnostics II. Taylor & Francis Group, CRC Press, Balkema book, London 2019. DOI: https://doi.org/10.1201/9780429057618-32
Krak I. V., Kryvonos I. G., Kulias A. I.: Applied aspects of the synthesis and analysis of voice information. Cybernetics and Systems Analysis 49(4), 2013, 589–596. DOI: https://doi.org/10.1007/s10559-013-9545-9
Krak I., Kondratiuk S.: Cross-platform software for the development of sign communication system: Dactyl language modelling. 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies – CSIT, 2017, 1,8098760, 167–170 DOI: https://doi.org/10.1109/STC-CSIT.2017.8098760
Ludwig U., Holzner D., Denzer C. et al.: Subclinical and clinical hypothyroidism and non-alcoholic fatty liver disease: a cross-sectional study of a random population sample aged 18 to 65 years. BMC Endocr Disord. 15. 2015, 41. DOI: https://doi.org/10.1186/s12902-015-0030-5
Ross D. S., Burch G. B, Cooper D. S. et al.: American Thyroid Association Guidelines for Diagnosis and Management of Hyperthyroidism and other causes of Thyrotoxicosis. Thyroid 26(10), 2016, 1343–1421. DOI: https://doi.org/10.1089/thy.2016.0229
Sinn D. H., Cho S. J., Gu S. et al.: Persistent Nonalcoholic Fatty Liver Disease Increases Risk for Carotid Atherosclerosis. Gastroenterology 151(3), 2016, 481–488. DOI: https://doi.org/10.1053/j.gastro.2016.06.001
Strashnenko A. N., Vysotskaya E. V., Demin Y. A. et al.: A method for prognosis of primary open-angle glaucoma. International Review on Computers and Software 8, 2013, 1943–1949.
Weiwei He, Xiaofei An, Ling Li et al.: Relationship between Hypothyroidism and Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-analysis. Front Endocrinol (Lausanne) 8, 2017, 335. DOI: https://doi.org/10.3389/fendo.2017.00335
Weng S. F., Reps J., Kai J., Garibaldi J. M., Qureshi N.: Can machinelearning improve cardiovascular risk prediction using routine clinical data? PLOS ONE 12(4), 2017, e0174944 [http://doi.org/10.1371/journal.pone.0174944]. DOI: https://doi.org/10.1371/journal.pone.0174944
Article Details
Abstract views: 403
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
