Bano A., Chaker L., Plompen E. P. C., et al.: Thyroid Function and the Risk of Nonalcoholic Fatty Liver Disease: The Rotterdam Study. J Clin Endocrinol Metab. 101(8), 2016, 3204–3211.
DOI: https://doi.org/10.1210/jc.2016-1300
Belyalov F. I.: Prognozirovaniye i shkaly v kardiologii 2ye-izd. MEDPRESS-inform, Moscow 2018.
Belialov F. I.: Risk prediction scores of diseases. Complex Issues of Cardiovascular Diseases 7(1), 2018, 84–93 [http://doi.org/10.17802/2306-1278-2018-7-1-84-93].
DOI: https://doi.org/10.17802/2306-1278-2018-7-1-84-93
Georgiyants M., Khvysyuk O., Boguslavskaуa N. et al.: Development of a mathematical model for predicting postoperative pain among patients with limb injuries. Eastern-European Journal of Enterprise Technologies 2, N4(86), 2017, 4–9 [http://doi.org/10.15587/1729-4061.2017.95157].
DOI: https://doi.org/10.15587/1729-4061.2017.95157
Graham I., Atar D., Borch-Johnsen K. et al.: European guidelines on cardiovascular disease prevention in clinical practice: full text. Eur. J. Cardiovasc. Prev. Rehabil. 14, 2007, S1–S113.
Kojuri J., Boostani R., Dehghani P., Nowroozipour F., Saki N.: Prediction of acute myocardial infarction with artificial neural networks in patients with nondiagnostic electrocardiogram. Journal of Cardiovascular Disease Research. 6(2), 2015, 51–60.
DOI: https://doi.org/10.5530/jcdr.2015.2.2
Kolesnikova E. V.: Sovremennyy patsiyent s zabolevaniyem pechenii patologiyey serdechno-sosudistoy sistemy: kakoy vybor sdelat? Contemporary gastroenterology 2(76), 2014, 85–94.
Kolesnikova O. V., Nemtsova V. D.: Effect of preventive measures for major metabolic parameters in patients with non-alcoholic fatty liver disease and cardiovascular risk. The ESC Textbook of Preventive Cardiology. Comprehensive, practical, and the official textbook of the European Association for Cardiovascular Prevention and Rehabilitation. Oxford University press, 2015.
Koval S. M., Snihurska I. O., Vysotska O. et al.: Prognosis of essential hypertension progression in patients with abdominal obesity. Wójcik W., Pavlov S., Kalimoldayev, M. (Eds.): Information Technology in Medical Diagnostics II. Taylor & Francis Group, CRC Press, Balkema book, London 2019.
DOI: https://doi.org/10.1201/9780429057618-32
Krak I. V., Kryvonos I. G., Kulias A. I.: Applied aspects of the synthesis and analysis of voice information. Cybernetics and Systems Analysis 49(4), 2013, 589–596.
DOI: https://doi.org/10.1007/s10559-013-9545-9
Krak I., Kondratiuk S.: Cross-platform software for the development of sign communication system: Dactyl language modelling. 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies – CSIT, 2017, 1,8098760, 167–170
DOI: https://doi.org/10.1109/STC-CSIT.2017.8098760
Ludwig U., Holzner D., Denzer C. et al.: Subclinical and clinical hypothyroidism and non-alcoholic fatty liver disease: a cross-sectional study of a random population sample aged 18 to 65 years. BMC Endocr Disord. 15. 2015, 41.
DOI: https://doi.org/10.1186/s12902-015-0030-5
Ross D. S., Burch G. B, Cooper D. S. et al.: American Thyroid Association Guidelines for Diagnosis and Management of Hyperthyroidism and other causes of Thyrotoxicosis. Thyroid 26(10), 2016, 1343–1421.
DOI: https://doi.org/10.1089/thy.2016.0229
Sinn D. H., Cho S. J., Gu S. et al.: Persistent Nonalcoholic Fatty Liver Disease Increases Risk for Carotid Atherosclerosis. Gastroenterology 151(3), 2016, 481–488.
DOI: https://doi.org/10.1053/j.gastro.2016.06.001
Strashnenko A. N., Vysotskaya E. V., Demin Y. A. et al.: A method for prognosis of primary open-angle glaucoma. International Review on Computers and Software 8, 2013, 1943–1949.
Weiwei He, Xiaofei An, Ling Li et al.: Relationship between Hypothyroidism and Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-analysis. Front Endocrinol (Lausanne) 8, 2017, 335.
DOI: https://doi.org/10.3389/fendo.2017.00335
Weng S. F., Reps J., Kai J., Garibaldi J. M., Qureshi N.: Can machinelearning improve cardiovascular risk prediction using routine clinical data? PLOS ONE 12(4), 2017, e0174944 [http://doi.org/10.1371/journal.pone.0174944].
DOI: https://doi.org/10.1371/journal.pone.0174944