EXERGY ANALYSIS OF DOUBLE-CIRCUIT FLAT SOLAR COLLECTOR WITH THERMOSYPHON CIRCULATION


Abstract

In the present work, an exergy analysis was done of two-circuit flat solar collector with thermosiphon circulation. The article presents a mathematical model of energy and exergic analysis of flat solar collectors, as well as calculations of solar radiation efficiency, temperature, flow rate of the fluid, exergy rates and exergy loss rates are done. The significance of the results achieved is high, since experimental studies can detect inefficient components of the solar heating system. The exergetic efficiency of a dual-circuit flat solar collector with a thermosiphon circulation describes irreversibility of the process according to thermodynamic parameters. This is caused by a large the degree of overheating achieved at the end of the processes of compression and evaporation, which leads to large differences in heat exchange temperature based on the heat pump cycle. The exergy efficiency value for the entire system is 70. Maximum values energy efficiency and exergy at noon, 32.5% and 2.23%, respectively. The efficiency of exergy is 4%, and the highest the loss of exergy is the difference between the absorber plates and the sun, accounting for 52.86% of the total exergy rate.


Keywords

temperature; solar energy; analysis; mathematical model

Amirgaliyev Ye.N., Kunelbayev M., Wójcik W., Kalizhanova A.U., Auyelbekov O.A., Katayev N.S., Kozbakova A.Kh., Irzhanova A.A.: Solar-driven resources of the republic of Kazakhstan. News of The National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences 4(430)/2018, 18–27.

Arora A., Kaushik S.C.: Theoretical analysis of a vapour compression refrigeration system with R502, R404A and R507A. Int. J. Refrig. 31/2008, 998–1005. DOI: https://doi.org/10.1016/j.ijrefrig.2007.12.015

Ben H.: Analysis and Synthesis of Energy Utilization. Chinese Petrochemical Engineering Press, Beijing 1995.

Cengel Y.A., Boles M.A.: Thermodynamics and Engineering Approach. McGraw-Hill, Boston 2005.

Duffie J.A, Beckman W.A.: Solar engineering of thermal process. John Wiley and Sons Inc., Canada 1974.

Duffie J.A, Beckman W.A.: Solar engineering of thermal process. Wiley, New York 1991.

Farahat H.A.S., Sarhaddi F.: Exergetic optimization of flat plate solar collectors. Renew. Energy J. 8/2009, 1169–1174. DOI: https://doi.org/10.1016/j.renene.2008.06.014

Ge Z., Wang H., Wang H., Zhang S., Guan X.: Exergy analysis of flat plate solar collectors. Entropy 16/2014, 2549–2567. DOI: https://doi.org/10.3390/e16052549

Gertzos K.P., Caouris Y.G., Panidis T.: Optimal design and placement of serpentine heat exchangers for indirect heat withdrawal, inside flat plate integrated collector storage solar water heaters (ICSSWH). Renew. Energy 35/2010, 1741–1750. DOI: https://doi.org/10.1016/j.renene.2009.12.014

Goswami D.Y., Kreith F., Kreider J.F.: Principles of solar engineering. Taylor & Francis, Pasadena 2000.

Gupta M.K., Kaushik S.C.: Exergetic performance evaluation and parametric studies of solar air heater. Energy 33/2008, 1691–1702. DOI: https://doi.org/10.1016/j.energy.2008.05.010

Hossain M.S., Saidur R., Fayaz H., Rahim N.A., Islam M.R., Ahamed J.U., Rahman M.M.: Review on solar water heater collector and thermal energy performance of circulating pipe. Renew. Sustain. Energy Rev. 15/2011, 3801–3812. DOI: https://doi.org/10.1016/j.rser.2011.06.008

Jafarkazemi F., Ahmadifard E.: Energetic and Exergetic evaluation of flat plate solar collectors. Renew. Energy 56/2013, 55–63. DOI: https://doi.org/10.1016/j.renene.2012.10.031

Kalogirou S.A., Karellas S., Braimakis K., Stanciu C., Badescu V.: Exergy analysis of solar thermal collectors and processes. Prog. Energy Combust. Sci. 56/2016, 106–137. DOI: https://doi.org/10.1016/j.pecs.2016.05.002

Liu R.H.T.G., Cengel Y.A.: Exergy Analysis of Solar Heating System. J. Sol. Energy Eng. 117/1995, 249–251. DOI: https://doi.org/10.1115/1.2847815

Luminosu I.; Fara L.: Determination of the optimal operation mode of a flat solar collector by exergetic analysis and numerical simulation. Energy 30/2005, 731–747. DOI: https://doi.org/10.1016/j.energy.2004.04.061

Mahadi M.S.-U.-R., Hasan M.F., Ahammed A., Kibria M.T., Huque S.: Construction, fabrication and performance analysis of an indigenously built serpentine type thermosyphon solar water heater. Proceedings of the 2014 3rd International Conference on the Developments in Renewable Energy Technology (ICDRET), Dhaka, Bangladesh, 29–31 May 2014, 2–7. DOI: https://doi.org/10.1109/ICDRET.2014.6861712

Marletta L.: Air conditioning systems from the 2nd law perspective. Entropy 15/2013, 859–877. DOI: https://doi.org/10.3390/e12040859

Matlab Optimization Toolbox, https://www.mathworks.com/products/ optimization.html (available 1.06.2019).

Suzuki A.: General theory of exergy-balance analysis and application to solar collector. Energy 13/1988, 153–160. DOI: https://doi.org/10.1016/0360-5442(88)90040-0

Torres-Reyes E., Gortari J.C., Ibarra-Salazar B., Picon-Nuñez M.: A design method of flat-plate solar collectors based on minimum entropy generation. Exergy Int. J. 1/2001, 46–52. DOI: https://doi.org/10.1016/S1164-0235(01)00009-7

Xiaowu W., Ben H.: Exergy analysis of domestic-scale solar water heaters. Renew. Sustain. Energy Rev. 9/2005, 638–645. DOI: https://doi.org/10.1016/j.rser.2004.04.007

Yazdi M., Aliehyaei M., Rosen M.A.: Exergy, economic and environmental analysis of gas turbine inlet air cooling with a heat pump using a novel system configuration. Sustainability 7/2015, 14259–14286. DOI: https://doi.org/10.3390/su71014259

Download

Published : 2019-09-26


Wójcik, W., Kalimoldayev, M., Amirgaliyev, Y., Kunelbayev, M., Kalizhanova, A., Kozbakova, A., & Merembayev, T. (2019). EXERGY ANALYSIS OF DOUBLE-CIRCUIT FLAT SOLAR COLLECTOR WITH THERMOSYPHON CIRCULATION. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 9(3), 35-39. https://doi.org/10.35784/iapgos.230

Waldemar Wójcik 
Lublin University of Technology, Institute of Electronics and Information Technology  Poland
http://orcid.org/0000-0002-0843-8053
Maksat Kalimoldayev 
Institute of Information and Computational Technologies SR MES RK  Kazakhstan
http://orcid.org/0000-0003-0025-8880
Yedilkhan Amirgaliyev 
Institute of Information and Computational Technologies SR MES RK; Al-Farabi Kazakh National University  Kazakhstan
http://orcid.org/0000-0002-6528-0619
Murat Kunelbayev 
Institute of Information and Computational Technologies SR MES RK  Kazakhstan
http://orcid.org/0000-0002-5648-4476
Aliya Kalizhanova  kalizhanova_aliya@mail.ru
Institute of Information and Computational Technologies SR MES RK; Al-Farabi Kazakh National University  Kazakhstan
http://orcid.org/0000-0002-5979-9756
Ainur Kozbakova 
Institute of Information and Computational Technologies SR MES RK; Al-Farabi Kazakh National University  Kazakhstan
http://orcid.org/0000-0002-5213-4882
Timur Merembayev 
Institute of Information and Computational Technologies SR MES RK  Kazakhstan
http://orcid.org/0000-0001-8185-235X