NOVEL HYBRID ALGORITHM USING CONVOLUTIONAL AUTOENCODER WITH SVM FOR ELECTRICAL IMPEDANCE TOMOGRAPHY AND ULTRASOUND COMPUTED TOMOGRAPHY
Łukasz Maciura
lukasz.maciura@netrix.com.plResearch and Development Center, Netrix S.A,. Lublin, Poland (Poland)
http://orcid.org/0000-0001-8657-3472
Dariusz Wójcik
Research and Development Center, Netrix S.A,. Lublin, Poland (Poland)
http://orcid.org/0000-0002-4200-3432
Tomasz Rymarczyk
Research and Development Center, Netrix S.A,. Lublin, Poland (Poland)
http://orcid.org/0000-0002-3524-9151
Krzysztof Król
Research and Development Center, Netrix S.A,. Lublin, Poland (Poland)
http://orcid.org/0000-0002-0114-2794
Abstract
This paper presents a new hybrid algorithm using multiple Support Vector Machines models with convolutional autoencoder to Electrical Impedance Tomography, and Ultrasound Computed Tomography image reconstruction. The ultimate hybrid solution uses multiple SVM models to convert input measurements to individual autoencoder codes representing a given scene then the decoder part of the autoencoder can reconstruct the scene
Keywords:
convolutional autoencoder, SVM, electrical impedance tomography, ultrasound transmission tomographyReferences
Aziz Taha A., Hanbury A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Medical Imaging 15(29), 2015, 1–28.
DOI: https://doi.org/10.1186/s12880-015-0068-x
Google Scholar
Chen B. et al.: Extended Joint Sparsity Reconstruction for Spatial and Temporal ERT Imaging. Sensors 18, 2018, 4014.
DOI: https://doi.org/10.3390/s18114014
Google Scholar
Chen P. H. et al.: A tutorial on ν-support vector machines. Applied Stochastic Models in Business and Industry 21, 2005, 111–136.
DOI: https://doi.org/10.1002/asmb.537
Google Scholar
Chen Z. et al.: Application of Deep Neural Network to the Reconstruction of Two-Phase Material Imaging by Capacitively Coupled Electrical Resistance Tomography. Electronics 10, 2021, 1058.
DOI: https://doi.org/10.3390/electronics10091058
Google Scholar
Duraj A., Korzeniewska E., Krawczyk A.: Classification algorithms to identify changes in resistance. Przegląd Elektrotechniczny 91(12), 2015, 82–84.
DOI: https://doi.org/10.15199/48.2015.12.19
Google Scholar
Dusek J., Mikulka J.: Measurement-Based Domain Parameter Optimization in Electrical Impedance Tomography Imaging. Sensors 21, 2021, 2507.
DOI: https://doi.org/10.3390/s21072507
Google Scholar
Fan Y. et al.: DDN: dual domain network architecture for non-linear ultrasound transmission tomography reconstruction. Proc. SPIE 11602, 2021, 1160209 [http://doi.org/10.1117/12.2580911].
DOI: https://doi.org/10.1117/12.2580911
Google Scholar
Fan Y., Ying L.: Solving electrical impedance tomography with deep learning. Journal of Computational Physics 404, 2020, 109119.
DOI: https://doi.org/10.1016/j.jcp.2019.109119
Google Scholar
Fernandez-Fuentes X. et al.: Towards a Fast and Accurate EIT Inverse Problem Solver: A Machine Learning Approach. Electronics 7(12), 2018, 422.
DOI: https://doi.org/10.3390/electronics7120422
Google Scholar
Hamilton S. J., Hauptmann A.: Deep D – bar: Real time Electrical Impedance Tomography Imaging with Deep Neural Networks. IEEE Trans. Med. Imaging 37(10), 2018, 2367–2377.
DOI: https://doi.org/10.1109/TMI.2018.2828303
Google Scholar
Józefczak A. et al.: Ultrasound transmission tomography-guided heating with nanoparticles. Measurement 197, 2022, [http://doi.org/10.1016/j.measurement.2022.111345].
DOI: https://doi.org/10.1016/j.measurement.2022.111345
Google Scholar
Kania K. et al.: Image reconstruction in ultrasound transmission tomography using the Fermat's Principle. Przegląd Elektrotechniczny 96(1), 2020, 186–189.
DOI: https://doi.org/10.15199/48.2020.01.41
Google Scholar
Khan T. A., Ling S.H.: Review on Electrical Impedance Tomography: Artificial Intelligence Methods and its Applications. Algorithms 12(5), 2019, 1–18.
DOI: https://doi.org/10.3390/a12050088
Google Scholar
Kłosowski G. et al.: Comparison of Machine Learning Methods for Image Reconstruction Using the LSTM Classifier in Industrial Electrical Tomography. Energies 14(21), 2021, 7269.
DOI: https://doi.org/10.3390/en14217269
Google Scholar
Kłosowski G. et al.: Maintenance of industrial reactors supported by deep learning driven ultrasound tomography. Przegląd Elektrotechniczny 98(4), 2022, 138–147.
DOI: https://doi.org/10.17531/ein.2020.1.16
Google Scholar
Kłosowski G. et al.: Neural hybrid tomograph for monitoring industrial reactors, Przegląd Elektrotechniczny 96(12), 2020, 190–193.
DOI: https://doi.org/10.15199/48.2020.12.40
Google Scholar
Kłosowski G. et al.: Quality Assessment of the Neural Algorithms on the Example of EIT-UST Hybrid Tomography. Sensors 20(11), 2020, 3324.
DOI: https://doi.org/10.3390/s20113324
Google Scholar
Kozłowski E. et al.: Logistic regression in image reconstruction in electrical impedance tomography, Przegląd Elektrotechniczny 96(5), 2020, 95–98.
DOI: https://doi.org/10.15199/48.2020.05.19
Google Scholar
Krawczyk A., Korzeniewska E.: Magnetophosphenes–history and contemporary implications. Przegląd Elektrotechniczny 94(1), 2018, 61–64.
DOI: https://doi.org/10.15199/48.2018.12.52
Google Scholar
Li X. et al.: An image reconstruction framework based on deep neural network for electrical impedance tomography. IEEE International Conference on Image Processing, Beijing, China, 2017.
DOI: https://doi.org/10.1109/ICIP.2017.8296950
Google Scholar
Li X. et. al.: A novel deep neural network method for electrical impedance tomography. Transactions of the Institute of Measurement and Control 41(14), 2019, 4035–4049.
DOI: https://doi.org/10.1177/0142331219845037
Google Scholar
Łukiański M., Wajman R.: The diagnostic of two-phase separation process using digital image segmentation algorithms. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 10(3), 2020, 5–8.
DOI: https://doi.org/10.35784/iapgos.1544
Google Scholar
Mosorov V. et al.: Plug Regime Flow Velocity Measurement Problem Based on Correlability Notion and Twin Plane Electrical Capacitance Tomography: Use Case. Sensors 21(6), 2021, 2189 [http://doi.org/10.3390/s21062189].
DOI: https://doi.org/10.3390/s21062189
Google Scholar
Seo J. K. et al.: A Learning – Based Method for Solving III – Posed Nonlinear Inverse Problems: A Simulation Study of Lung EIT, SIAM. Journal on Imaging Sciences 12(3), 2019.
DOI: https://doi.org/10.1137/18M1222600
Google Scholar
Szczesny A., Korzeniewska E.: Selection of the method for the earthing resistance measurement. Przegląd Elektrotechniczny 94, 2018, 178–181.
Google Scholar
Yu H., Kim S.: SVM Tutorial: Classification, Regression, and Ranking. Handbook of Natural computing, 2012.
DOI: https://doi.org/10.1007/978-3-540-92910-9_15
Google Scholar
Zhao W. et al.: Ultrasound transmission tomography image reconstruction with a fully convolutional neural network. Phys Med Biol. 65(23), 2020, 235021, [http://doi.org/10.1088/1361-6560/abb5c3. PMID: 33245050].
DOI: https://doi.org/10.1088/1361-6560/abb5c3
Google Scholar
Authors
Łukasz Maciuralukasz.maciura@netrix.com.pl
Research and Development Center, Netrix S.A,. Lublin, Poland Poland
http://orcid.org/0000-0001-8657-3472
Authors
Dariusz WójcikResearch and Development Center, Netrix S.A,. Lublin, Poland Poland
http://orcid.org/0000-0002-4200-3432
Authors
Tomasz RymarczykResearch and Development Center, Netrix S.A,. Lublin, Poland Poland
http://orcid.org/0000-0002-3524-9151
Authors
Krzysztof KrólResearch and Development Center, Netrix S.A,. Lublin, Poland Poland
http://orcid.org/0000-0002-0114-2794
Statistics
Abstract views: 221PDF downloads: 247
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Tomasz Rymarczyk, Grzegorz Kłosowski, SUPPLY CHAIN RISK MANAGEMENT BY MONTE CARLO METHOD , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 7 No. 4 (2017)
- Tomasz Rymarczyk, Barbara Stefaniak, Przemysław Adamkiewicz, NEURAL NETWORK AND CONVOLUTIONAL ALGORITH TO EXTRACT SHAPES BY E-MEDICUS APPLICATION , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 8 No. 3 (2018)
- Tomasz Rymarczyk, Paweł Tchórzewski, HYBRID TECHNIQUES TO SOLVE OPTIMIZATION PROBLEMS IN EIT , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 7 No. 1 (2017)
- Tomasz Rymarczyk, Paweł Tchórzewski, Jan Sikora, COUPLING BOUNDARY ELEMENT METHOD WITH LEVEL SET METHOD TO SOLVE INVERSE PROBLEM , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 7 No. 1 (2017)
- Krzysztof Król, Tomasz Rymarczyk, Konrad Niderla, Edward Kozłowski, SENSOR PLATFORM OF INDUSTRIAL TOMOGRAPHY FOR DIAGNOSTICS AND CONTROL OF TECHNOLOGICAL PROCESSES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 1 (2023)
- Tomasz Rymarczyk, Grzegorz Kłosowski, Tomasz Cieplak, THE USE OF PETRI NETS IN DECISION SUPPORT SYSTEMS BASED ON INTELLIGENT MULTIPLY SOURCE DATA ANALYSIS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 7 No. 4 (2017)
- Michał Gołąbek, Tomasz Rymarczyk, DESIGN OF INNOVATIVE MEASUREMENT SYSTEMS IN ULTRASONIC TOMOGRAPHY , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 2 (2022)
- Tomasz Rymarczyk, Przemysław Adamkiewicz, Jakub Szumowski, Konrad Niderla, Łukasz Gołąbek, Jan Sikora, CONCEPT OF DETECTION SYSTEM TO LOCALIZE INSIDE CLOSED AREA BY RADIO TOMOGRAPHIC IMAGING , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 7 No. 1 (2017)
- Tomasz Cieplak, Tomasz Rymarczyk, Grzegorz Kłosowski, USING MICROSERVICES ARCHITECTURE AS ANALYTICAL SYSTEM FOR ELECTRICAL IMPEDANCE TOMOGRAPHY IMAGING , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 8 No. 1 (2018)
- Tomasz Rymarczyk, ANALYSIS MEDICAL AND STEREOSCOPIC IMAGES BY E-MEDICUS SYSTEM , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 8 No. 2 (2018)