NEURAL NETWORK AND CONVOLUTIONAL ALGORITH TO EXTRACT SHAPES BY E-MEDICUS APPLICATION


Abstract

The solution shows the architecture of the system collecting and analyzing data. There was tried to develop algorithms to image segmentation. These algorithms are needed to identify arbitrary number of phases for the segmentation problem. With the use of algorithms such as the level set method, neural networks and deep learning methods, it can obtain a quicker diagnosis and automatically marking areas of the interest region in medical images.


Keywords

image analysis; level set method; artificial intelligence algorithms

Balla-Arabe S., Gao X.: A Fast and Robust Level Set Method for Image Segmentation Using Fuzzy Clustering and Lattice Boltzmann Method. IEEE Trans Cybern. 43(3)/2013.

Filipowicz S.F., Rymarczyk T.: The Shape Reconstruction of Unknown Objects for Inverse Problems. Przeglad Elektrotechniczny 88(3A)/2012, 55–57.

Jajuga K.: Statystyczna teoria rozpoznawania obrazów. PWN, Warszawa 1990.

Kłosowski G., Rymarczyk T.: Using Neural Networks and Deep Learning Algorithms in Elecrical Impedance Tomography. Informatyka, Automatyka Pomiary w Gospodarce i Ochronie Środowiska (IAPGOŚ) 3/2017, 99–102.

Kurzyński M.: Rozpoznawanie obiektów. Metody statystyczne. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 1997.

Li C., Kao C., Gore J. C., Ding Z.: Minimization of Region-Scalable Fitting Energy for Image Segmentation. IEEE Trans. Image Processing 17(10)/2008, 1940–1949.

Mumford D., Shah J.: Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42/1989, 577–685.

Osher S., Fedkiw R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York 2003.

Osher S., Sethian J.A.: Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations. Journal of Computational Physics 79/1988, 12–49.

Osowski S., Markiewicz T., Kruk M., Kozłowski W.: Metody sztucznej inteligencji do wspomagania diagnostyki patologii tkanek. WAT, Warszawa 2011.

Polakowski, K., Filipowicz, S.F., Sikora, J., Rymarczyk, T., Quality of imaging in multipath tomography. Przeglad Elektrotechniczny 85(12)/2009, 134–136.

Polakowski K., Filipowicz S., Sikora J., Rymarczyk T.: Tomography Technology Application for Workflows of Gases Monitoring in The Automotive Systems. Przegląd Elektrotechniczny 84(12)/2008, 227–229.

Rymarczyk T., Filipowicz S., Sikora J., Polakowski K.: A piecewise-constant minimal partition problem in the image reconstruction. Przegląd Elektrotechniczny 85(12)/2009, 141–143.

Rymarczyk T., Sikora J., Waleska B.: Coupled Boundary Element Method and Level Set Function for Solving Inverse Problem in EIT. 7th World Congress on Industrial Process Tomography, WCIPT7 2013, 312–319.

Download

Published : 2018-09-25


Rymarczyk, T., Stefaniak, B., & Adamkiewicz, P. (2018). NEURAL NETWORK AND CONVOLUTIONAL ALGORITH TO EXTRACT SHAPES BY E-MEDICUS APPLICATION. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 8(3), 39-42. https://doi.org/10.5604/01.3001.0012.5282

Tomasz Rymarczyk  tomasz@rymarczyk.com
1Research and Development Center, Netrix S.A., Lublin, 2University of Economics and Innovation in Lublin  Poland
Barbara Stefaniak 
Research and Development Center, Netrix S.A., Lublin  Poland
Przemysław Adamkiewicz 
Research and Development Center, Netrix S.A., Lublin  Poland