An image reconstruction with use of EIT method has been found useful in many areas of medical, industrial and environmental applications. Papers show that computational systems used for image reconstructions are utilizing parallel and distributed computations and multi-tier architecture, as well as monolithic architecture. The aim of our research is to define an analytical system architecture that will be able to combine a variety of image reconstruction algorithms with their representations in different programming languages. Based on examples described in different proceedings and research papers, a microservices architecture seems to be an interesting alternative to the monolithic one.


electrical impedance tomography; microservices; Internet of Things; image reconstruction

Adler A., Arnold J.H., Bayford R., Borsic A., Brown B., Dixon P., Grychtol B.: GREIT: a unified approach to 2D linear EIT reconstruction of lung images. Physiological measurement 30(6), 2009, 35–55, [DOI: 10.1088/0967-3334/30/6/S03].

Borcea L.: Electrical impedance tomography. Inverse Problems 18, 2002, 99–136.

Amaral M., Polo J., Carrera D., Mohomed I., Unuvar M., Steinder M.: Performance evaluation of microservices architectures using containers. Network Computing and Applications (NCA), IEEE 14th International Symposium, 2015.

D'Agostino D., Roverelli L., Zereik G., De Luca A., Salvaterra R., Belfiore A., Tiengo A.: A microservice-based portal for X-ray transient and variable sources. PeerJ Preprints, No. e2519v2, 2017.

Dragoni N., Giallorenzo S., Lafuente A. L., Mazzara M., Montesi F., Mustafin R., Safina L.: Microservices: yesterday, today, and tomorrow. arXiv preprint arXiv:1606.04036, 2016.

Dragoni N., Lanese I., Larsen S. T., Mazzara M., Mustafin R., Safina L.: Microservices: How to make your application scale. arXiv preprint arXiv:1702.07149, 2017

Duda K., Adamkiewicz P., Rymarczyk T.: Nondestructive Method to Examine Brick Wall Dampness. International Interdisciplinary Phd Workshop 2016, 68–71.

Filipowicz S.F., Rymarczyk T.: Measurement Methods and Image Reconstruction in Electrical Impedance Tomography. Przeglad Elektrotechniczny 88(6), 2012, 247–250.

Filipowicz S.F., Rymarczyk T.: The Shape Reconstruction of Unknown Objects for Inverse Problems. Przeglad Elektrotechniczny 88(3A), 2012, 55–57.

Fowler M.: Microservices. ThoughtWorks,, 2014 [06.09.2017].

Holder D.S.: Electrical Impedance Tomography: Methods, History and Applications. Series in Medical Physics and Biomedical Engineering, London 2005.

Johanson A., Flögel S., Dullo C., Hasselbring W.: OceanTEA: Exploring Ocean-Derived Climate Data Using Microservices. 6th International Workshop on Climate Informatics, National Center for Atmospheric Research in Bloulder, 2016.

Kapusta P., Majchrowicz M., Sankowski D., Jackowska-Strumiłło L., Banasiak R.: Distributed multi-node, multi-GPU, heterogeneous system for 3D image reconstruction in Electrical Capacitance Tomography–network performance and application analysis. Przegląd Elektrotechniczny 89(2B), 2013, 339—342.

Kim M., Mohindra A., Muthusamy V., Ranchal R., Salapura V., Slominski A., Khalaf R.: Building scalable, secure, multi-tenant cloud services on IBM Bluemix. IBM Journal of Research and Development 60(2-3), 2016.

Richardson C.: Pattern: Microservices Architecture, [06.09.2017].

Rybak G., Chaniecki Z., Grudzień K., Romanowski A., Sankowski D.: Non–invasive methods of industrial process control. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 3, 2014, 41–45 [DOI: 10.5604/20830157.1121349].

Rymarczyk T.: Using electrical impedance tomography to monitoring flood banks. International Journal of Applied Electromagnetics and Mechanics 45, 2014, 489–494.

Rymarczyk T.: New Methods to Determine Moisture Areas by Electrical Impedance Tomography. International Journal of Applied Electromagnetics and Mechanics 37(1–2), 2016, 79–87.

Rymarczyk T., Tchórzewski P., Sikora J.: Monitoring of Flood Embankment System by Nondestructive Method with Infinite Boundary Element. Studies in Applied Electromagnetics and Mechanics 40, 2015, 176–183.

Rymarczyk T., Tchórzewski P.: Topological methods to determine damages of flood embankments. Przegląd Elektrotechniczny 92(12), 2016, 153–156.

Sankowski D., Sikora J.: Electrical capacitance tomography: Theoretical basis and applications. IEL, Warsaw 2010.

Sousa G., Rudametkin W., Duchien L.: Automated Setup of Multi-Cloud Environments for Microservices-Based Applications. 9th IEEE International Conference on Cloud Computing, San Francisco, USA, 2016.

Sikora J., Wójtowicz S.: Industrial and Biological Tomography: Theoretical Basis and Applications. IEL, Warsaw 2010.

Smolik W.: Forward Problem Solver for Image Reconstruction by Nonlinear Optimization in Electrical Capacitance Tomography. Flow Measurement and Instrumentation 21, 2010, 70–77.

Tai C., Chung E., Chan T.: Electrical impedance tomography using level set representation and total variational regularization. Journal of Computational Physics 205(1), 2005, 357–372.

Wajman R., Fiderek P., Fidos H., Jaworski T., Nowakowski J., Sankowski D., Banasiak R.: Metrological evaluation of a 3D electrical capacitance tomography measurement system for two-phase flow fraction determination. Meas. Sci. Technol. 24(6), 2013, 065302.

Wang M.: Industrial Tomography: Systems and Applications. Elsevier, 2015.


Published : 2018-02-28

Cieplak, T., Rymarczyk, T., & Kłosowski, G. (2018). USING MICROSERVICES ARCHITECTURE AS ANALYTICAL SYSTEM FOR ELECTRICAL IMPEDANCE TOMOGRAPHY IMAGING. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 8(1), 52-55.

Tomasz Cieplak
Lublin University of Technology, Faculty of Management, Department of Organization of Enterprise  Poland
Tomasz Rymarczyk 
1Research and Development Center, Netrix S.A., Lublin, 2University of Economics and Innovation in Lublin  Poland
Grzegorz Kłosowski 
Lublin University of Technology, Faculty of Management, Department of Organization of Enterprise   Poland