USING MICROSERVICES ARCHITECTURE AS ANALYTICAL SYSTEM FOR ELECTRICAL IMPEDANCE TOMOGRAPHY IMAGING
Article Sidebar
Open full text
Issue Vol. 8 No. 1 (2018)
-
DETERMINATION OF THE EFFICIENCY FACTORS OF THE ABSORPTION AND SCATTERING OF NICKEL NANOPARTICLES
Oleksandr Machulianskyi, Bohdan Babych, Viktor Machulianskyi4-7
-
CONTROL MODEL OF DATA STREAM TRANSMITTED OVER A NETWORK BASED ON PROXYING TECHNOLOGY
Olesia Barkovska, Vitaliy Serdechnyi8-11
-
INVESTIGATION OF THE MEMRISTOR NONLINEAR PROPERTIES
Sviatoslav Khrapko, Volodymyr Rusyn, Leonid Politansky12-15
-
IMITATION MODELING OF THE ROUTING PROCESS BASED ON FUZZY LOGIC
Ivan Lesovoy, Genagij Pylypenko16-19
-
INVARIANT PIEZORESONANCE DEVICES BASED ON ADAPTIVE MULTIFREQUENCY SYSTEMS WITH A PREDICTIVE STANDARD
Sergey Pidchenko, Alla Taranchuk20-23
-
DEVELOPMENT AND RESEARCH OF CRYPTOGRAPHIC HASH FUNCTIONS BASED ON TWO-DIMENSIONAL CELLULAR AUTOMATA
Yuliya Tanasyuk, Sergey Ostapov24-27
-
GENERALIZED APPROACH TO HURST EXPONENT ESTIMATING BY TIME SERIES
Lyudmyla Kirichenko, Tamara Radivilova, Vitalii Bulakh28-31
-
SPECTRAL SENSITIVITY OF HUMAN VISION TO THE LIGHT PULSES
Volodymyr Brailovsky, Ivan Pyslar, Magharyta Rozhdestvenska, Magdalena Michalska32-35
-
ORGANIZATION OF IMPLEMENTATION OF UBIQUITOUS SENSOR NETWORKS
Sergey Toliupa, Yuriy Kravchenko, Aleksander Trush36-39
-
PECULIARITIES OF THE RADIO SIGNALS AND HINDRANCES IN THE NAVIGATION SYSTEM OF THE REMOTE-PILOTED VEHICLES
Mykola Mykyjchuk, Volodymyr Markiv40-43
-
DISTORTIONLESS SIGNALS TRANSFER THROUGH A WIRE MEDIA METASTRUCTURE
Dmytro Vovchuk, Serhii Haliuk, Leonid Politanskyy44-47
-
THE USE OF ARTIFICIAL INTELLIGENCE IN AUTOMATED IN-HOUSE LOGISTICS CENTRES
Tomasz Rymarczyk, Grzegorz Kłosowski48-51
-
USING MICROSERVICES ARCHITECTURE AS ANALYTICAL SYSTEM FOR ELECTRICAL IMPEDANCE TOMOGRAPHY IMAGING
Tomasz Cieplak, Tomasz Rymarczyk, Grzegorz Kłosowski52-55
-
OPTIMIZATION OF DATA PROCESSING FOR REQUESTING OBSERVATION SYSTEMS
Iryna V. Svyd, Andrij I. Obod, Oleksandr S. Maltsev, Daria B. Pavlova, Bridel V. Mongo56-59
-
METHODS OF PRODUCING APODIZED FIBER BRAGG GRATINGS AND EXAMPLES OF THEIR APPLICATIONS
Łukasz Zychowicz, Jacek Klimek, Piotr Kisała60-63
-
DEAD TIME MEASUREMENT BY TWO-SOURCE METHOD – OPTIMIZATION OF MEASUREMENT TIME DIVISION
Grzegorz Domański, Bogumił Konarzewski, Robert Kurjata, Krzysztof Zaremba, Janusz Marzec, Michał Dziewiecki, Marcin Ziembicki, Andrzej Rychter, Waldemar Smolik, Roman Szabatin, Piotr Brzeski64-66
-
ANALYSIS OF THE BENDING STRAIN INFLUENCE ON THE CURRENT- -VOLTAGE CHARACTERISTICS OF HTC SUPERCONDUCTING TAPES
Jacek Sosnowski67-70
-
DETERMINATION OF R = F(T) CHARACTERISTICS OF THE FIRST AND SECOND GENERATION SUPERCONDUCTING TAPES
Rafał Kwoka, Janusz Kozak, Michał Majka71-74
Archives
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
-
Vol. 8 No. 4
2018-12-16 16
-
Vol. 8 No. 3
2018-09-25 16
-
Vol. 8 No. 2
2018-05-30 18
-
Vol. 8 No. 1
2018-02-28 18
-
Vol. 7 No. 4
2017-12-21 23
-
Vol. 7 No. 3
2017-09-30 24
-
Vol. 7 No. 2
2017-06-30 27
-
Vol. 7 No. 1
2017-03-03 33
-
Vol. 6 No. 4
2016-12-22 16
-
Vol. 6 No. 3
2016-08-08 18
-
Vol. 6 No. 2
2016-05-10 16
-
Vol. 6 No. 1
2016-02-04 16
Main Article Content
DOI
Authors
tomasz.rymarczyk@netrix.com.pl
Abstract
An image reconstruction with use of EIT method has been found useful in many areas of medical, industrial and environmental applications. Papers show that computational systems used for image reconstructions are utilizing parallel and distributed computations and multi-tier architecture, as well as monolithic architecture. The aim of our research is to define an analytical system architecture that will be able to combine a variety of image reconstruction algorithms with their representations in different programming languages. Based on examples described in different proceedings and research papers, a microservices architecture seems to be an interesting alternative to the monolithic one.
Keywords:
References
Adler A., Arnold J.H., Bayford R., Borsic A., Brown B., Dixon P., Grychtol B.: GREIT: a unified approach to 2D linear EIT reconstruction of lung images. Physiological measurement 30(6), 2009, 35–55, [DOI: 10.1088/0967-3334/30/6/S03].
Borcea L.: Electrical impedance tomography. Inverse Problems 18, 2002, 99–136.
Amaral M., Polo J., Carrera D., Mohomed I., Unuvar M., Steinder M.: Performance evaluation of microservices architectures using containers. Network Computing and Applications (NCA), IEEE 14th International Symposium, 2015.
D'Agostino D., Roverelli L., Zereik G., De Luca A., Salvaterra R., Belfiore A., Tiengo A.: A microservice-based portal for X-ray transient and variable sources. PeerJ Preprints, No. e2519v2, 2017.
Dragoni N., Giallorenzo S., Lafuente A. L., Mazzara M., Montesi F., Mustafin R., Safina L.: Microservices: yesterday, today, and tomorrow. arXiv preprint arXiv:1606.04036, 2016.
Dragoni N., Lanese I., Larsen S. T., Mazzara M., Mustafin R., Safina L.: Microservices: How to make your application scale. arXiv preprint arXiv:1702.07149, 2017
Duda K., Adamkiewicz P., Rymarczyk T.: Nondestructive Method to Examine Brick Wall Dampness. International Interdisciplinary Phd Workshop 2016, 68–71.
Filipowicz S.F., Rymarczyk T.: Measurement Methods and Image Reconstruction in Electrical Impedance Tomography. Przeglad Elektrotechniczny 88(6), 2012, 247–250.
Filipowicz S.F., Rymarczyk T.: The Shape Reconstruction of Unknown Objects for Inverse Problems. Przeglad Elektrotechniczny 88(3A), 2012, 55–57.
Fowler M.: Microservices. ThoughtWorks, http://martinfowler.com/articles/microservices.html, 2014 [06.09.2017].
Holder D.S.: Electrical Impedance Tomography: Methods, History and Applications. Series in Medical Physics and Biomedical Engineering, London 2005.
Johanson A., Flögel S., Dullo C., Hasselbring W.: OceanTEA: Exploring Ocean-Derived Climate Data Using Microservices. 6th International Workshop on Climate Informatics, National Center for Atmospheric Research in Bloulder, 2016.
Kapusta P., Majchrowicz M., Sankowski D., Jackowska-Strumiłło L., Banasiak R.: Distributed multi-node, multi-GPU, heterogeneous system for 3D image reconstruction in Electrical Capacitance Tomography–network performance and application analysis. Przegląd Elektrotechniczny 89(2B), 2013, 339—342.
Kim M., Mohindra A., Muthusamy V., Ranchal R., Salapura V., Slominski A., Khalaf R.: Building scalable, secure, multi-tenant cloud services on IBM Bluemix. IBM Journal of Research and Development 60(2-3), 2016.
Richardson C.: Pattern: Microservices Architecture, Microservices.io. http://microservices.io/patterns/microservices.html [06.09.2017].
Rybak G., Chaniecki Z., Grudzień K., Romanowski A., Sankowski D.: Non–invasive methods of industrial process control. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 3, 2014, 41–45 [DOI: 10.5604/20830157.1121349].
Rymarczyk T.: Using electrical impedance tomography to monitoring flood banks. International Journal of Applied Electromagnetics and Mechanics 45, 2014, 489–494.
Rymarczyk T.: New Methods to Determine Moisture Areas by Electrical Impedance Tomography. International Journal of Applied Electromagnetics and Mechanics 37(1–2), 2016, 79–87.
Rymarczyk T., Tchórzewski P., Sikora J.: Monitoring of Flood Embankment System by Nondestructive Method with Infinite Boundary Element. Studies in Applied Electromagnetics and Mechanics 40, 2015, 176–183.
Rymarczyk T., Tchórzewski P.: Topological methods to determine damages of flood embankments. Przegląd Elektrotechniczny 92(12), 2016, 153–156.
Sankowski D., Sikora J.: Electrical capacitance tomography: Theoretical basis and applications. IEL, Warsaw 2010.
Sousa G., Rudametkin W., Duchien L.: Automated Setup of Multi-Cloud Environments for Microservices-Based Applications. 9th IEEE International Conference on Cloud Computing, San Francisco, USA, 2016.
Sikora J., Wójtowicz S.: Industrial and Biological Tomography: Theoretical Basis and Applications. IEL, Warsaw 2010.
Smolik W.: Forward Problem Solver for Image Reconstruction by Nonlinear Optimization in Electrical Capacitance Tomography. Flow Measurement and Instrumentation 21, 2010, 70–77.
Tai C., Chung E., Chan T.: Electrical impedance tomography using level set representation and total variational regularization. Journal of Computational Physics 205(1), 2005, 357–372.
Wajman R., Fiderek P., Fidos H., Jaworski T., Nowakowski J., Sankowski D., Banasiak R.: Metrological evaluation of a 3D electrical capacitance tomography measurement system for two-phase flow fraction determination. Meas. Sci. Technol. 24(6), 2013, 065302.
Wang M.: Industrial Tomography: Systems and Applications. Elsevier, 2015.
Article Details
Abstract views: 373
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
