This paper presents the hybrid algorithm for identification the unknown shape of an interface to solve the inverse problem in electrical impedance tomography. The conductivity values in different regions are determined by the finite element method. The numerical algorithm is a combination of the level set method, Gauss-Newton method and the finite element method. The representation of the shape of the boundary and its evolution during an iterative reconstruction process is achieved by the level set function. The cost of the numerical algorithm is enough effective. These algorithms are a relatively new procedure to overcome this problem.


Inverse Problem; Level Set Method; Electrical Impedance Tomography

Chan T. and Vese L.: Active contours without edges, IEEE Transactions on Image Processing, vol. 10, 2001, 266–277.

Ito K., Kunish K., Li Z.: The Level-Set Function Approach to an Inverse Interface Problem. Inverse Problems, 2001, Vol. 17, No. 5, 1225–1242.

Lechleiter A., Rieder A.: Newton regularizations for impedance tomography: convergence by local injectivity. Inverse Problems, 24(6), 2008.

Li C., Xu C., Gui C., Fox M. D.: Level set evolution without re-initialization. A new variational formulation, In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005, volume 1, 430–436.

Osher S., Sethian J.A.: Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations, Journal of Computational Physics, 1988, 79, 12–49.

Osher S., Fedkiw R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York 2003.

Osher S., Santosa F.: Level set methods for optimization problems involving geometry and constraints. Frequencies of a two-density inhomogeneous drum. Journal of Computational Physics, 2001, 171, 272–288.

Rymarczyk T.: New Methods to Determine Moisture Areas by Electrical Impedance Tomography, International Journal of Applied Electromagnetics and Mechanics 08/2016, 1–9.

Rymarczyk T., Filipowicz S.F.: The Shape Reconstruction of Unknown Objects for Inverse Problems, Electrical Review, NR 5/2012/3a.

Rymarczyk T.: Characterization of the shape of unknown objects by inverse numerical methods, Przegląd Elektrotechniczny, R. 88 NR 7b/2012, 138–140, 2012.

Rymarczyk T, Adamkiewicz P., Duda K., Szumowski J., Sikora J.: New Electrical Tomographic Method to Determine Dampness in Historical Buildings, v.65, 2/2016, Achieve of Electrical Engineering, 2016, 273–283.

Sethian J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, 1999.

Sokolowski J., Zochowski A.: On the topological derivative in shape optimization, SIAM Journal on Control and Optimization, vol. 37, 1999, 1251–1272.

Smolik W, Forward Problem Solver for Image Reconstruction by Nonlinear Optimization in Electrical Capacitance Tomography, Flow Measurement and Instrumentation, Vol. 21, Issue 1, March 2010, 70–77.

Wajman R., Fiderek P., Fidos H., Jaworski T., Nowakowski J., Sankowski D., Banasiak R.: Metrological evaluation of a 3D electrical capacitance tomography measurement system for two-phase flow fraction determination; Meas. Sci. Technol. 2013, Vol. 24 No. 065302.

Tai C., Chung E., Chan T.: Electrical impedance tomography using level set representation and total variational regularization. Journal of Computational Physics, 2005, vol. 205, no. 1, 357–372.

Zhao H.-K., Osher S., Fedkiw R.: Fast Surface Reconstruction using the Level Set Method. 1st IEEE Workshop on Variational and Level Set Methods, in conjunction with the 8th International Conference on Computer Vision (ICCV), Vancouver, Canada, 2001, 194–202.


Published : 2017-03-03

Rymarczyk, T., & Tchórzewski, P. (2017). HYBRID TECHNIQUES TO SOLVE OPTIMIZATION PROBLEMS IN EIT. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 7(1), 72-75. https://doi.org/10.5604/01.3001.0010.4587

Tomasz Rymarczyk  tomasz.rymarczyk@netrix.com.pl
Netrix S.A., Research and Development Center  Poland
Paweł Tchórzewski 
Netrix S.A., Research and Development Center  Poland