ANALYSIS MEDICAL AND STEREOSCOPIC IMAGES BY E-MEDICUS SYSTEM


Abstract

In this work, there were implemented methods to analyze and segmentation medical images by using different kind of algorithms. The solution shows the architecture of the system collecting and analyzing data. There was tried to develop an algorithm for level set method applied to piecewise constant image segmentation. These algorithms are needed to identify arbitrary number of phases for the segmentation problem. With the use of modern algorithms, it can obtain a quicker diagnosis and automatically marking areas of the interest region in medical images.


Keywords

segmentation; image analysis; level set method

Argenziano G., Soyer P.H., De Giorgi V., Piccolo D.: Interactive atlas of dermatoscopy, EDRA 2000.

Balla-Arabe S., Gao X.: A Fast and Robust Level Set Method for Image Segmentation Using Fuzzy Clustering and Lattice Boltzmann Method. IEEE Trans Cybern. 43(3), 2013.

Braun R.P., Rabinovitz H.S.: Dermoscopy of pigmented skin lesions. J. Am. Acad. Dermatol. 52, 2005, 109–121.

Gdula A., Rymarczyk T.: Application Computational Algorithms for Analysis of Dental Image. Proc. of WD 2015.

Jajuga K.: Statystyczna teoria rozpoznawania obrazów. PWN. Warszawa 1990.

Johr R.H.: Dermoscopy: Alternative melanocytic algorithms-the ABCD rule of dermatoscopy, Menzies scoring method, and 7-point checklist. Clin Dermatol. 20(3), 2002, 240–247.

Kamińska J., Winciorek G.: Dermatologia cyfrowa. Cornetis. Wrocław 2008.

Kurzyński M.: Rozpoznawanie obiektów. Metody statystyczne. Oficyna Wydawnicza Politechniki Wrocławskiej. Wrocław 1997.

Li C., Kao C., Gore J. C., Ding Z.: Minimization of Region-Scalable Fitting Energy for Image Segmentation. IEEE Trans. Image Processing 17 (10), 2008, 1940–1949.

Mumford D., Shah J.: Optimal approximation by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics 42(5), 1989, 577–685 [DOI: 10.1002/cpa.3160420503].

Osher S., Fedkiw R.: Level Set Methods and Dynamic Implicit Surfaces. Springer. New York 2003.

Osher S., Sethian J.A.: Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations. Journal of Computational Physics 79, 1988, 12–49.

Ossowski S.: Sieci neuronowe do przetwarzania informacji. Politechnika Warszawska. Warszawa 2006.

Osowski S., Markiewicz T., Kruk M., Kozłowski W.: Metody sztucznej inteligencji do wspomagania diagnostyki patologii tkanek. WAT. Warszawa 2011.

Rymarczyk T.: Characterization of the shape of unknown objects by inverse numerical methods. Przegląd Elektrotechniczny 7b/2012, 138–140,

Rymarczyk T., Osior K.: E-Medicus System for Analysis and Images Segmentation. Proc. of. IIPhWD 2013.

Rymarczyk T., Filipowicz S.F., Sikora J., Polakowski K.: A piecewise-constant minimal partition problem in the image reconstruction. Przegląd Elektrotechniczny 12/2009, 141–143.

Sethian J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, 1999.

Stąpor K.: Metody klasyfikacji obiektów w wizji komputerowej. Wydawnictwo Naukowe PWN. Warszawa 2011.

Stolz W., Braun-Falco O.: Color atlas of dermatoscopy. Blackwell Science, 1994.

Vese L. Chan T.: A new multiphase level set framework for image segmentation via the Mumford and Shah model. CAM Report 01-25, UCLA Math. Dept., 2001.

Download

Published : 2018-05-30


Rymarczyk, T. (2018). ANALYSIS MEDICAL AND STEREOSCOPIC IMAGES BY E-MEDICUS SYSTEM. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 8(2), 54-57. https://doi.org/10.5604/01.3001.0012.0707

Tomasz Rymarczyk  tomasz.rymarczyk@netrix.com.pl
1Research and Development Center, Netrix S.A., Lublin, 2University of Economics and Innovation in Lublin  Poland