USING NEURAL NETWORKS AND DEEP LEARNING ALGORITHMS IN ELECTRICAL IMPEDANCE TOMOGRAPHY
Grzegorz Kłosowski
g.klosowski@pollub.plLublin University of Technology, Faculty of Management, Department of Organization of Enterprise (Poland)
Tomasz Rymarczyk
Research and Development Center, Netrix S.A., Lublin; University of Economics and Innovation in Lublin (Poland)
Abstract
This paper refers to the cases of the use of Artificial Neural Networks and Convolutional Neural Networks in impedance tomography. Machine Learning methods can be used to teach computers different technical problems. The efficient use of conventional artificial neural networks in tomography is possible able to effectively visualize objects. The first step of implementation Deep Learning methods in Electrical Impedance Tomography was performed in this work.
Keywords:
Imaging tomography, Multilayer Perceptron, Deep Learning, Convolutional Neural NetworksReferences
Bladt E. et al.: Electron tomography based on highly limited data using a neural network reconstruction technique. Ultramicroscopy 158/2015, 81–88.
Google Scholar
Buduma N., Locascio N.: Fundamentals of Deep Learning. Designing Next-Generation Machine Intelligence Algorithms. O'Reilly Media, 2017.
Google Scholar
Durairaj D. C., Krishna M. C., Murugesan R.: A neural network approach for image reconstruction in electron magnetic resonance tomography. Computers in biology and medicine 37(10)/2007, 1492–1501.
Google Scholar
Egmont-Petersen M., Ridder de D., Handels H.: Image processing with neural networks – a review. Pattern Recognition 35/2002, 2279–2301.
Google Scholar
Minnett R. C. J. et al.: Neural network tomography: Network replication from output surface geometry. Neural Networks 24(5)/2011, 484–492.
Google Scholar
Pelt D. M., Batenburg K. J.: Fast tomographic reconstruction from limited data using artificial neural networks. IEEE Trans. Image Process. 22/2013, 5238–5251.
Google Scholar
Rybak G., Chaniecki Z., Grudzień K., Romanowski A., Sankowski D.: Non–invasive methods of industrial process control. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 4(3)/2014, 41–45.
Google Scholar
Rymarczyk T.: New Methods to Determine Moisture Areas by Electrical Impedance Tomography. International Journal of Applied Electromagnetics and Mechanics 37(1-2)/2016, 79–87.
Google Scholar
Stasiak M. et al.: Principal component analysis and artificial neural network approach to electrical impedance tomography problems approximated by multi-region boundary element method. Engineering Analysis with Boundary Elements 31(8)/2007, 713–720.
Google Scholar
Tapson J.: Neural Networks and Stochastic Search Methods Applied to Capacitive Tomography. IFAC Proceedings Volumes 30(7)/1997, 631–634.
Google Scholar
Tapson J.: Neural networks and stochastic search methods applied to industrial capacitive tomography. Control Engineering Practice 7(1)/1999, 117–121.
Google Scholar
Tchorzewski P., Rymarczyk T., Sikora J.: Using Topological Algorithms to Solve Inverse Problem in Electrical Impedance Tomography. International Interdisciplinary Phd Workshop 2016, 46–50.
Google Scholar
Wang J. et al.: Neural-network approach for optical tomography. Signal processing, 86(9)/2006, 2495–2502.
Google Scholar
Authors
Grzegorz Kłosowskig.klosowski@pollub.pl
Lublin University of Technology, Faculty of Management, Department of Organization of Enterprise Poland
Authors
Tomasz RymarczykResearch and Development Center, Netrix S.A., Lublin; University of Economics and Innovation in Lublin Poland
Statistics
Abstract views: 594PDF downloads: 219
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Tomasz Rymarczyk, Grzegorz Kłosowski, SUPPLY CHAIN RISK MANAGEMENT BY MONTE CARLO METHOD , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 7 No. 4 (2017)
- Tomasz Rymarczyk, Paweł Tchórzewski, HYBRID TECHNIQUES TO SOLVE OPTIMIZATION PROBLEMS IN EIT , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 7 No. 1 (2017)
- Tomasz Rymarczyk, Paweł Tchórzewski, Jan Sikora, COUPLING BOUNDARY ELEMENT METHOD WITH LEVEL SET METHOD TO SOLVE INVERSE PROBLEM , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 7 No. 1 (2017)
- Tomasz Rymarczyk, Grzegorz Kłosowski, Tomasz Cieplak, THE USE OF PETRI NETS IN DECISION SUPPORT SYSTEMS BASED ON INTELLIGENT MULTIPLY SOURCE DATA ANALYSIS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 7 No. 4 (2017)
- Michał Gołąbek, Tomasz Rymarczyk, DESIGN OF INNOVATIVE MEASUREMENT SYSTEMS IN ULTRASONIC TOMOGRAPHY , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 2 (2022)
- Tomasz Rymarczyk, Przemysław Adamkiewicz, Jakub Szumowski, Konrad Niderla, Łukasz Gołąbek, Jan Sikora, CONCEPT OF DETECTION SYSTEM TO LOCALIZE INSIDE CLOSED AREA BY RADIO TOMOGRAPHIC IMAGING , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 7 No. 1 (2017)
- Tomasz Cieplak, Tomasz Rymarczyk, Grzegorz Kłosowski, USING MICROSERVICES ARCHITECTURE AS ANALYTICAL SYSTEM FOR ELECTRICAL IMPEDANCE TOMOGRAPHY IMAGING , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 8 No. 1 (2018)
- Krzysztof Król, Tomasz Rymarczyk, Konrad Niderla, Edward Kozłowski, SENSOR PLATFORM OF INDUSTRIAL TOMOGRAPHY FOR DIAGNOSTICS AND CONTROL OF TECHNOLOGICAL PROCESSES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 1 (2023)
- Tomasz Rymarczyk, Jan Sikora, Przemysław Adamkiewicz, Piotr Bożek, Michał Gołąbek, THE CHANCES OF PRECISION ENHANCE FOR ULTRASONIC IMAGING , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 8 No. 3 (2018)
- Tomasz Rymarczyk, ANALYSIS MEDICAL AND STEREOSCOPIC IMAGES BY E-MEDICUS SYSTEM , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 8 No. 2 (2018)