[1] Allouch A. et al.: MAVSec: Securing the MAVLink Protocol for Ardupilot/PX4 Unmanned Aerial Systems. 15th International Wireless Communications & Mobile Computing Conference (IWCMC), IEEE, Tangier, Morocco, 2019, 621–628 [https://doi.org/10.1109/IWCMC.2019.8766667].
[2] Baldi S. et al.: ArduPilot-Based Adaptive Autopilot: Architecture and Software-in-the-Loop Experiments. IEEE Transactions on Aerospace and Electronic Systems 58(5), 2022, 4473–4485 [https://doi.org/10.1109/TAES.2022.3162179].
[3] Ebeid E., Skriver M., Jin J.: A Survey on Open-Source Flight Control Platforms of Unmanned Aerial Vehicles. Euromicro Conference on Digital System Design (DSD), IEEE, Vienna, Austria, 2017, 396–402 [https://doi.org/10.1109/DSD.2017.30].
[4] Farabi M. R. A., Sintawati A.: Flood Early Warning System at Jakarta Dam Using Internet of Things (IoT)-Based Real-Time Fishbone Method to Support Industrial Revolution 4.0. Journal of Soft Computing Explorations 5(2), 2024, 99–106 [https://doi.org/10.52465/joscex.v5i2.293].
[5] Formanek L. et al.: Prototype for Measuring and Predicting Air Quality Using UAVs. EDULEARN23 Proceedings, IATED Academy, Palma, Spain, 2023, 6810–6814 [https://doi.org/10.21125/edulearn.2023.1794].
[6] Fresk E., Nikolakopoulos G., Gustafsson T.: A Generalized Reduced-Complexity Inertial Navigation System for Unmanned Aerial Vehicles. IEEE Transactions on Control Systems Technology 25(1), 2017, 192–207 [https://doi.org/10.1109/TCST.2016.2542022].
[7] García J., Molina J. M.: Simulation in Real Conditions of Navigation and Obstacle Avoidance with PX4/Gazebo Platform. Personal and Ubiquitous Computing 26, 2022, 1171–1191 [https://doi.org/10.1007/s00779-019-01356-4].
[8] Gill R., D’Andrea R.: An Annular Wing VTOL UAV: Flight Dynamics and Control. Drones 4(2), 2020, 14 [https://doi.org/10.3390/drones4020014].
[9] Grogan S., Pellerin R., Gamache M.: The Use of Unmanned Aerial Vehicles and Drones in Search and Rescue Operations–A Survey. Conference PROLOG, Hull, UK, 2018, 1–13.
[10] Hari Shankar R. L. et al.: Application of UAV for Pest, Weeds and Disease Detection Using Open Computer Vision. International Conference on Smart Systems and Inventive Technology (ICSSIT), IEEE, Tirunelveli, India, 2018, 287–292 [https://doi.org/10.1109/ICSSIT.2018.8748404].
[11] Itkin M., Kim M., Park Y.: Development of Cloud-Based UAV Monitoring and Management System. Sensors 16(11), 2016, 1913 [https://doi.org/10.3390/s16111913].
[12] Jing Y. et al.: PX4 Simulation Results of a Quadcopter with a Disturbance-Observer-Based and PSO-Optimized Sliding Mode Surface Controller. Drones 6(9), 2022, 261 [https://doi.org/10.3390/drones6090261].
[13] Kamel M. et al.: Model Predictive Control for Trajectory Tracking of Unmanned Aerial Vehicles Using Robot Operating System. Koubaa A. (ed.): Robot Operating System (ROS). Springer, Cham 2017, 3–39 [https://doi.org/10.1007/978-3-319-54927-9_1].
[14] Kangunde V., Jamisola R. S., Theophilus E. K.: A Review on Drones Controlled in Real-Time. International Journal of Dynamics and Control 9, 2021, 1832–1846 [https://doi.org/10.1007/s40435-020-00737-5].
[15] Lamping A. P. et al.: Multi-UAV Control and Supervision with ROS. Aviation Technology, Integration, and Operations Conference, American Institute of Aeronautics and Astronautics, Atlanta, Georgia, 2018, 4245 [https://doi.org/10.2514/6.2018-4245].
[16] Lee H. et al.: A Robot Operating System Framework for Secure UAV Communications. Sensors 21(4), 2021, 1369 [https://doi.org/10.3390/s21041369].
[17] Luo F. et al.: Stability of Cloud-Based UAV Systems Supporting Big Data Acquisition and Processing. IEEE Transactions on Cloud Computing 7(3), 2019, 866–877 [https://doi.org/10.1109/TCC.2017.2696529].
[18] Luo Z., Xiang X., Zhang Q.: Autopilot System of Remotely Operated Vehicle Based on Ardupilot. Yu H. et al. (eds.): Intelligent Robotics and Applications. Springer, Cham 2019, 206–217 [https://doi.org/10.1007/978-3-030-27535-8_19].
[19] Minucci F., Vinogradov E., Pollin S.: Avoiding Collisions at Any (Low) Cost: ADS-B Like Position Broadcast for UAVs. IEEE Access 8, 2020, 121843–121857 [https://doi.org/10.1109/ACCESS.2020.3007315].
[20] Mou J. et al.: Adaptive Control of Flapping-Wing Micro Aerial Vehicle with Coupled Dynamics and Unknown Model Parameters. Applied Sciences 12(18), 2022, 9104 [https://doi.org/10.3390/app12189104].
[21] Pandian A. P.: A Review on Future Challenges and Concerns Associated with an Internet of Things Based Automatic Health Monitoring System. Journal of Electrical Engineering and Automation 3(2), 2021, 92–109 [https://doi.org/10.36548/jeea.2021.2.003].
[22] Ravi N., El-Sharkawy M.: Integration of UAVs with Real-Time Operating Systems Using UAVCAN. 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), IEEE, New York, USA, 2019, 600–605 [https://doi.org/10.1109/UEMCON47517.2019.8993011].
[23] Silberschatz A., Galvin P. B., Gagne G.: Operating System Concepts. 10th ed. John Wiley & Sons, 2018.
[24] Sobhy A. R. et al.: UAV Cloud Operating System. 5th International Conference of Engineering Against Failure (ICEAF-V 2018), MATEC Web of Conferences, Chios, Greece, 2018, 05011 [https://doi.org/10.1051/matecconf/201818805011].
[25] Sørensen L. Y., Jacobsen L. T., Hansen J. P.: Low Cost and Flexible UAV Deployment of Sensors. Sensors 17(1), 2017, 154 [https://doi.org/10.3390/s17010154].
[26] Sushma R., Kumar J. S.: Dynamic Vehicle Modelling and Controlling Techniques for Autonomous Vehicle Systems. Journal of Electrical Engineering and Automation 4(4), 2023, 307–315 [https://doi.org/10.36548/jeea.2022.4.007].
[27] Tanenbaum A. S., Bos H.: Modern Operating Systems. 5th ed. Pearson, 2023.
[28] Zhang M. et al.: Which Is the Best Real-Time Operating System for Drones? Evaluation of the Real-Time Characteristics of NuttX and ChibiOS. International Conference on Unmanned Aircraft Systems (ICUAS), IEEE, Athens, Greece, 2021, 582–590 [https://doi.org/10.1109/ICUAS51884.2021.9476878].
[29] ArduPilot Documentation. Ardupilot [https://ardupilot.org/ardupilot/]. (Accessed 6 Feb. 2024).
[30] Ardupilot. Ardupilot [https://ardupilot.org/] (Accessed 6 Feb. 2024).
[31] ChibiOS/RT. ChibiOS [https://www.chibios.org/dokuwiki/doku.php] (Accessed 12 Feb. 2024).
[32] FreeRTOS. FreeRTOS [https://www.freertos.org/] (Accessed 12 Feb. 2024).
[33] MicroPython. MicroPython [https://micropython.org/] (Accessed 12 Feb. 2024).
[34] Nutt G.: NuttX Operating System User’s Manual. Apache NuttX [https://cwiki.apache.org/confluence/display/NUTTX/Nuttx] (Accessed 6 Feb. 2024).
[35] NuttX. Apache NuttX [https://nuttx.apache.org/] (Accessed 6 Feb. 2024).
[36] PX4 Autopilot User Guide. PX4 [https://docs.px4.io/main/en/] (Accessed 6 Feb. 2024).
[37] PX4 Autopilot. PX4 [https://px4.io/] (Accessed 6 Feb. 2024).
[38] Real-Time Operating Systems (RTOS). Unmanned Systems Technology [https://www.unmannedsystemstechnology.com/expo/real-time-operating-systems/] (Accessed 8 Feb. 2024).
[39] Robot Operating System. ROS [https://www.ros.org/] (Accessed 6 Feb. 2024).
[40] ROS (Robot Operating System) Documentation. ROS Wiki [https://wiki.ros.org/Documentation] (Accessed 6 Feb. 2024).