Impact of metrics on the effectiveness of Kohonen network clustering
Article Sidebar
Open full text
Issue Vol. 34 (2025)
-
Impact of metrics on the effectiveness of Kohonen network clustering
Krystian Wypart, Edyta Łukasik1-7
-
Analysis of object recognition systems using augmented reality glasses
Jan Figura, Rafał Kuźmiczuk, Marcin Badurowicz8-13
-
Comparative analysis of selected data recovery software
Tomasz Szymczyk, Rafał Wróbel14-20
-
Usability analysis of graphic user interfaces for Internet forums with consideration for Universal Design Principles
Krystian Łęczycki, Jakub Łabendowicz, Maria Skublewska-Paszkowska21-28
-
Ergonomic analysis of book web services’ interfaces
Patrycja Kłodnicka, Dawid Matraszek29-35
-
Comparison of the effectiveness of tools for testing the security of web applications
Izabela Kaźmierak36-43
-
Comparative analysis of the performance of relational and non-relational databases in applications implemented in C#
Patryk Baliński, Łukasz Chudy, Maria Skublewska-Paszkowska44-53
-
Analysis of performance and energy efficiency of processors with hybrid architecture
Dawid Żytko, Marcin Badurowicz54-59
-
Analysis of user identification methods in web browsers
Eduard Chyzhik, Jakub Smołka60-67
-
Multi-aspect comparative analysis of JavaScript programming frameworks – React.js and Solid.js
Jakub Kryk, Małgorzata Plechawska-Wójcik68-75
-
Realization and discussion of selected artificial intelligence algorithms in computer games
Yurii Tyshchenko76-80
-
Comparative analysis of selected aspects of web application architectures
Łukasz Krzysztoń, Konrad Łatwiński, Małgorzata Plechawska-Wójcik81-88
-
Evaluation of deep learning models for flood forecasting in Bangladesh
Asif Rahman Rumee89-97
-
Optical character recognition for ancient scripts: a case study on Syloti Nagri using deep learning models
Tanzidul Islam, Sheikh Kamrul Hasan Omur, Nafiz Nahid, Lukman Chowdhury, Gourab Roy, Md. Abu Naser Mojumder, Md. Janibul Alam Soeb, Md. Fahad Jubayer98-107
-
Design of a non-human proctoring and authentication system for mobile phone-based online examination
Brendan Ubochi, Emmanuel Oluleye, Charity Odeyemi, Chinyere Ubochi108-112
Main Article Content
DOI
Authors
Abstract
The research paper focuses on investigating the impact of different metrics on the clustering process in Kohonen networks, also known as self-organized maps (SOM). The theoretical foundations of Kohonen networks, including their structure and algorithm of operation, are presented. Various metrics, such as Euclidean distance, Manhattan and cosine distance and their potential impact on clustering process are then discussed. Experiments were conducted using the Iris dataset constrained to two dimensions using PCA.
Keywords:
References
[1] R. Ponmalai, C. Kamath, Self-Organizing Maps and Their Applications to Data Analysis, Lawrence Livermore National Laboratory (LLNL) (2019), https://doi.org/10.2172/1566795 [15.04.2024] DOI: https://doi.org/10.2172/1566795
[2] M. Saraee, S. Vahid Moosavi, S. Rezapour, Application of Self Organizing Map (SOM) to model a machining process, Journal of Manufacturing Technology Management 26 (2004) 818-830, https://doi.org/10.1108/ 17410381111149666[10.04.2024]
[3] S. C. Sheridan, C. C. Lee, The Self-Organizing Map in Synoptic Climatological Research, Progress in Physical Geography Earth and Environment 35 (2011) 109-119, https://doi.org/10.1177/0309133310397582 DOI: https://doi.org/10.1177/0309133310397582
[4] E. N. Cassano, J. M. Glisan, J. J. Cassano, W. J. Gutowski Jr., M.W. Seefeldt, Self-organizing map analysis of widespread temperature extremes in Alaska and Canada, Climate Research 62 (2015) 199-218, https://doi.org/10.3354/cr01274 DOI: https://doi.org/10.3354/cr01274
[5] W. F. de Carvalho Rocha, Ch. B. do Prado, N. Blonder, Comparison of Chemometric Problems in Food Analysis using Non-Linear Methods, Molecules 25 (2020) 3025, https://doi.org/10.3390/molecules25133025 DOI: https://doi.org/10.3390/molecules25133025
[6] I. Zankinski, K. Kolev, T. Balabanov, Alternatives for Neighborhood Function in Kohonen Maps, In Large-Scale Scientific Computing (LSSC) (2019) 540-544, https://doi.org/10.1007/978-3-030-41032-2_62 DOI: https://doi.org/10.1007/978-3-030-41032-2_62
[7] K. J. Krishnan, K. Mitra, Clustering Time Series Sensor Data Using Modified Kohonen Maps, In Seventh Indian Control Conference (ICC) (2021) 129-134, doi: 10.1109/ICC54714.2021.9703173. DOI: https://doi.org/10.1109/ICC54714.2021.9703173
[8] N. Ishii, Y. Tokuda, I. Torii, T. Kanda, Similarity Grouping of Paintings by Distance Measure and Self Organizing Map, In Knowledge-Based and Intelligent Information and Engineering Systems (KES) (2009) 713-720, https://doi.org/10.1007/978-3-642-04592-9_88 DOI: https://doi.org/10.1007/978-3-642-04592-9_88
[9] S. Ramiah, Effect of Lattice Topologies and Distance Measurements in Self-Organizing Map for Better Classification, In Emerging Research in Computing Information, Communication and Applications, (2019) 183-191, https://doi.org/10.1007/978-981-13-5953-8_16 DOI: https://doi.org/10.1007/978-981-13-5953-8_16
[10] K. L. Priddy, P. E. Keller, Artificial Neural Networks S: An Introduction, SPIE, 2005. DOI: https://doi.org/10.1117/3.633187
[11] R. Shirani Faradonbeh, S. Shaffiee Haghshenas, A. Taheri, R. Mikaeil, Application of self-organizing map and fuzzy c-mean techniques for rockburst clustering in deep underground projects, Neural Computing and Applications 32 (2020) 8545-8559, https://doi.org/10.1007/s00521-019-04353-z DOI: https://doi.org/10.1007/s00521-019-04353-z
[12] A. Javed, D. M. Rizzo, B. Suk. Lee, R. Gramling, Somtimes: self organizing maps for time series clustering and its application to serious illness conversations, Data Minning Knowledge Discovery 38 (2024) 813-839, https://doi.org/10.1007/s10618-023-00979-9 DOI: https://doi.org/10.1007/s10618-023-00979-9
[13] K. J. Smith, Precalculus: A Functional Approach to Graphing and Problem Solving ed 6 Jones & Bartlett Learning 6th edition, 2011.
[14] H. Rabal, N. Cap, C. Criado, N. Alamo, Holodiagrams using Mahalanobis Distance Optik 123 (2012) 1725-1731, https://doi.org/10.1016/j.ijleo.2011.11.077 DOI: https://doi.org/10.1016/j.ijleo.2011.11.077
[15] M. E. Masoud, M. M. A. Mahfouz, Protection scheme for transmission lines based on alienation coefficients for current signals, IET Generation Transmission and Distribution 4 (2010) 1236-1244 https://doi.org/10.1049/iet-gtd.2009.0648 DOI: https://doi.org/10.1049/iet-gtd.2009.0648
[16] H. Abdi, L. J. Williams, Principal component analysis, WIREs Computational Statistics 2 (2010) 433-459, https://doi.org/10.1002/wics.101 DOI: https://doi.org/10.1002/wics.101
[17] J. Lötsch, A. Ultsch, Exploiting the Structures of the U-matrix, In Advances in Self-Organizing Maps and Learning Vector Quantization. Advances in Intelligent Systems and Computing 295 (2014) 249-257, https://doi.org/10.1007/978-3-319-07695-9_24 DOI: https://doi.org/10.1007/978-3-319-07695-9_24
[18] P. J. Rousseeuw, Silhouettes, A graphical aid to the interpretation and validation of cluster analysis, Journal of Computational and Applied Mathemathics 20 (1987) 53-65, https://doi.org/10.1016/0377-0427(87)90125-7 DOI: https://doi.org/10.1016/0377-0427(87)90125-7
Article Details
Abstract views: 270

