Realization and discussion of selected artificial intelligence algorithms in computer games
Article Sidebar
Open full text
Issue Vol. 34 (2025)
-
Impact of metrics on the effectiveness of Kohonen network clustering
Krystian Wypart, Edyta Łukasik1-7
-
Analysis of object recognition systems using augmented reality glasses
Jan Figura, Rafał Kuźmiczuk, Marcin Badurowicz8-13
-
Comparative analysis of selected data recovery software
Tomasz Szymczyk, Rafał Wróbel14-20
-
Usability analysis of graphic user interfaces for Internet forums with consideration for Universal Design Principles
Krystian Łęczycki, Jakub Łabendowicz, Maria Skublewska-Paszkowska21-28
-
Ergonomic analysis of book web services’ interfaces
Patrycja Kłodnicka, Dawid Matraszek29-35
-
Comparison of the effectiveness of tools for testing the security of web applications
Izabela Kaźmierak36-43
-
Comparative analysis of the performance of relational and non-relational databases in applications implemented in C#
Patryk Baliński, Łukasz Chudy, Maria Skublewska-Paszkowska44-53
-
Analysis of performance and energy efficiency of processors with hybrid architecture
Dawid Żytko, Marcin Badurowicz54-59
-
Analysis of user identification methods in web browsers
Eduard Chyzhik, Jakub Smołka60-67
-
Multi-aspect comparative analysis of JavaScript programming frameworks – React.js and Solid.js
Jakub Kryk, Małgorzata Plechawska-Wójcik68-75
-
Realization and discussion of selected artificial intelligence algorithms in computer games
Yurii Tyshchenko76-80
-
Comparative analysis of selected aspects of web application architectures
Łukasz Krzysztoń, Konrad Łatwiński, Małgorzata Plechawska-Wójcik81-88
-
Evaluation of deep learning models for flood forecasting in Bangladesh
Asif Rahman Rumee89-97
-
Optical character recognition for ancient scripts: a case study on Syloti Nagri using deep learning models
Tanzidul Islam, Sheikh Kamrul Hasan Omur, Nafiz Nahid, Lukman Chowdhury, Gourab Roy, Md. Abu Naser Mojumder, Md. Janibul Alam Soeb, Md. Fahad Jubayer98-107
-
Design of a non-human proctoring and authentication system for mobile phone-based online examination
Brendan Ubochi, Emmanuel Oluleye, Charity Odeyemi, Chinyere Ubochi108-112
Main Article Content
DOI
Authors
yurii.tyshchenko@pollub.edu.pl
Abstract
The study explores the usage of reinforcement learning algorithms in computer card games, such as Proximal Policy Optimization and Monte Carlo Tree Search. The aim is to evaluate the efficiency and learning ability across different scenarios, such as Blackjack and Poker Limit Hold'em. Comparative analysis focuses on key metrics: learning speed, stability, reward evaluation and win rate. The results highlight strengths and limitations of PPO and MCTS. Also, the potential of hybrid approaches is discussed, that combine the strategic depth of MCTS with PPO's computational efficiency to create versatile AI agents capable of excelling in diverse gaming environments. The findings underscore the importance of aligning algorithmic characteristics with task specifics and domain factors.
Keywords:
References
[1] M. Moravčík, M. Schmid, N. Burch, V. Lisý, D. Morrill, N. Bard, T. Davis, K. Waugh, M. Johanson, M. Bowling, Deepstack: Expert-level artificial intelligence in heads-up no-limit poker, Science 356 (2017) 508–513, https://doi.org/10.1126/science.aam6960. DOI: https://doi.org/10.1126/science.aam6960
[2] N. Brown, T. Sandholm, Superhuman AI for heads-up no-limit poker: Libratus beats top professionals, Science 359 (2018) 418-424, https://doi.org/10.1126/science.aao1733. DOI: https://doi.org/10.1126/science.aao1733
[3] M. Lanctot, V. Zambaldi, A. Gruslys, A. Lazaridou, K. Tuyls, J. Perolat, D. Silver, T. Graepel, A Unified Game-Theoretic Approach to multiagent Reinforcement learning, Neural Information Processing Systems 30 (2017) 4190–4203, https://doi.org/10.48550/arXiv.1711.00832.
[4] P. Barros, O. Yalçın, A. Tanevska, A. Sciutti, Incorporating rivalry in Reinforcement Learning for a competitive game, Neural Computing and Applications 35 (2022) 16739–16752, https://doi.org/10.1007/s00521-022-07746-9. DOI: https://doi.org/10.1007/s00521-022-07746-9
[5] P. Barros, A. Tanevska, A. Sciutti, Learning from learners: Adapting reinforcement learning agents to be competitive in a card game, 2020 25th International Conference on Pattern Recognition (ICPR) (2020) 2716-2723, https://doi.org/10.1109/icpr48806.2021.9412807. DOI: https://doi.org/10.1109/ICPR48806.2021.9412807
[6] T. Anthony, Z. Tian, D. Barber, Thinking Fast and Slow with Deep Learning and Tree Search, NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems (2017) 5366 - 5376, https://doi.org/10.48550/arXiv.1705.08439.
[7] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis, Mastering the game of go with deep neural networks and Tree Search, Nature 529 (2016) 484–489, https://doi.org/10.1038/nature16961. DOI: https://doi.org/10.1038/nature16961
[8] J. Popic, B. Boskovic, J. Brest, Deep learning and the game of Checkers, MENDEL 27 (2021) 1–6, https://doi.org/10.13164/mendel.2021.2.001. DOI: https://doi.org/10.13164/mendel.2021.2.001
[9] T. Larsen, H. Teigen, T. Laache, D. Varagnolo, A. Rasheed, Comparing deep reinforcement learning algorithms’ Ability to safely navigate challenging waters, Frontiers in Robotics and AI 8 (2021) 738113, https://doi.org/10.3389/frobt.2021.738113. DOI: https://doi.org/10.3389/frobt.2021.738113
[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy optimization algorithms, CoRR (2017), https://arxiv.org/abs/1707.06347.
[11] J. Rubin, I. Watson, Computer poker: A Review, Artificial Intelligence 175 (2011) 958-987, https://doi.org/10.1016/j.artint.2010.12.005. DOI: https://doi.org/10.1016/j.artint.2010.12.005
[12] D. Zha, K. Lai, S. Huang, Y. Cao, K. Reddy, J. Vargas, A. Nguyen, R. Wei, J. Guo, X. Hu, RLCard: A platform for reinforcement learning in Card Games, Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (2020) 5264-5266, https://doi.org/10.24963/ijcai.2020. DOI: https://doi.org/10.24963/ijcai.2020/764
Article Details
Abstract views: 200

