Evaluation of deep learning models for flood forecasting in Bangladesh
Article Sidebar
Open full text
Issue Vol. 34 (2025)
-
Impact of metrics on the effectiveness of Kohonen network clustering
Krystian Wypart, Edyta Łukasik1-7
-
Analysis of object recognition systems using augmented reality glasses
Jan Figura, Rafał Kuźmiczuk, Marcin Badurowicz8-13
-
Comparative analysis of selected data recovery software
Tomasz Szymczyk, Rafał Wróbel14-20
-
Usability analysis of graphic user interfaces for Internet forums with consideration for Universal Design Principles
Krystian Łęczycki, Jakub Łabendowicz, Maria Skublewska-Paszkowska21-28
-
Ergonomic analysis of book web services’ interfaces
Patrycja Kłodnicka, Dawid Matraszek29-35
-
Comparison of the effectiveness of tools for testing the security of web applications
Izabela Kaźmierak36-43
-
Comparative analysis of the performance of relational and non-relational databases in applications implemented in C#
Patryk Baliński, Łukasz Chudy, Maria Skublewska-Paszkowska44-53
-
Analysis of performance and energy efficiency of processors with hybrid architecture
Dawid Żytko, Marcin Badurowicz54-59
-
Analysis of user identification methods in web browsers
Eduard Chyzhik, Jakub Smołka60-67
-
Multi-aspect comparative analysis of JavaScript programming frameworks – React.js and Solid.js
Jakub Kryk, Małgorzata Plechawska-Wójcik68-75
-
Realization and discussion of selected artificial intelligence algorithms in computer games
Yurii Tyshchenko76-80
-
Comparative analysis of selected aspects of web application architectures
Łukasz Krzysztoń, Konrad Łatwiński, Małgorzata Plechawska-Wójcik81-88
-
Evaluation of deep learning models for flood forecasting in Bangladesh
Asif Rahman Rumee89-97
-
Optical character recognition for ancient scripts: a case study on Syloti Nagri using deep learning models
Tanzidul Islam, Sheikh Kamrul Hasan Omur, Nafiz Nahid, Lukman Chowdhury, Gourab Roy, Md. Abu Naser Mojumder, Md. Janibul Alam Soeb, Md. Fahad Jubayer98-107
-
Design of a non-human proctoring and authentication system for mobile phone-based online examination
Brendan Ubochi, Emmanuel Oluleye, Charity Odeyemi, Chinyere Ubochi108-112
Main Article Content
DOI
Authors
Abstract
Flooding is a recurrent and devastating issue in Bangladesh, largely due to its geographical and climatic conditions. This study examined the performance of four deep learning architectures Feed-forward Neural Network (FNN), Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM) in predicting floods in Bangladesh. Utilizing a binary classification dataset of historical meteorological and hydrological data, the findings revealed that GRU outperformed the other models, achieving an accuracy of 98%, a precision of 99%, a recall of 98%, and an F1-score of 99%. In contrast, LSTM attained an accuracy of 96%, a precision of 99%, a recall of 95%, and an F1-score of 97%. These results underscored the effectiveness of GRU for operational flood forecasting, which was critical for enhancing disaster preparedness in the region.
Keywords:
References
[1] A. S. Islam, Improving flood forecasting in Bangladesh using an artificial neural network, Journal of Hydroinformatics 12(3) (2010) 351-364, https://doi.org/10.2166/hydro.2009.085. DOI: https://doi.org/10.2166/hydro.2009.085
[2] B. Lim, S. Zohren, Time-series forecasting with deep learning: a survey, Philosophical Transactions of the Royal Society A 379(2194) (2021) 1-14, https://doi.org/10.1098/rsta.2020.0209. DOI: https://doi.org/10.1098/rsta.2020.0209
[3] S. Hochreiter, J. Schmidhuber, Long Short-Term Memory, Neural Computation 9(8) (1997) 1735-1780, https://doi.org/10.1162/neco.1997.9.8.1735. DOI: https://doi.org/10.1162/neco.1997.9.8.1735
[4] S. M. Toufique, S. U. Bhuiyan, A. Lateef, A. Zaman, J. B. Islam, D. Z. Karim, Implementing Machine Learning Techniques to Forecast Floods in Bangladesh, In 2024 International Conference on Electrical, Computer and Energy Technologies (ICECET) (2024) 1-6, https://doi.org/10.1109/ICECET61485.2024.10698703. DOI: https://doi.org/10.1109/ICECET61485.2024.10698703
[5] A. Rajab, H. Farman, N. Islam, D. Syed, M. A. Elmagzoub, A. Shaikh, M. Alrizq, Flood Forecasting by Using Machine Learning: A Study Leveraging Historic Climatic Records of Bangladesh, Water 15(22) (2023) 1-37, https://doi.org/10.3390/w15223970. DOI: https://doi.org/10.3390/w15223970
[6] M. K. Hasan, M. M. Islam, M. Fahmida, Forecasting of Flood in the Non-Tidal River of Northern Regions of Bangladesh Using Machine Learning-Based Approach, Ceddi Journal of Information System and Technology (JST) 3(1) (2024) 26-37, https://doi.org/10.56134/jst.v3i1.69. DOI: https://doi.org/10.56134/jst.v3i1.69
[7] T. U. Shakib, E. Yasi, T. H. Rizu, N. Sharmin, An interactive flood forecasting tool with ensemble-based machine learning model: A Bangladesh Perspective, In 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT) (2023) 1-7, https://doi.org/10.1109/ICCCNT56998.2023.10306471. DOI: https://doi.org/10.1109/ICCCNT56998.2023.10306471
[8] M. A. Rahman, A. Akter, F. S. Richi, A. Shoud, T. Ahmed, A comparative study of undersampling and oversampling methods for flood forecasting in Bangladesh using machine learning, In 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT) (2023) 1-7, https://doi.org/10.1109/ICCCNT56998.2023.10306368. DOI: https://doi.org/10.1109/ICCCNT56998.2023.10306368
[9] M. Hamidul Haque, M. Sadia, M. Mustaq, Development of Flood Forecasting System for Someshwari-Kangsa Sub-watershed of Bangladesh-India Using Different Machine Learning Techniques, In EGU General Assembly Conference Abstracts (2021), https://ui.adsabs.harvard.edu/link_gateway/2021EGUGA..2315294H/doi:10.5194/egusphere-egu21-15294. DOI: https://doi.org/10.5194/egusphere-egu21-15294
[10] A. R. Rifath, M. G. Muktadir, M. Hasan, M. A. Islam, Flash flood prediction modeling in the hilly regions of Southeastern Bangladesh: A machine learning attempt on present and future climate scenarios, Environmental Challenges 17 (2024) 1-16, https://doi.org/10.1016/j.envc.2024.101029. DOI: https://doi.org/10.1016/j.envc.2024.101029
[11] K. K. Ganguly, N. Nahar, B. M. Hossain, A machine learning-based prediction and analysis of flood affected households: A case study of floods in Bangladesh, International journal of disaster risk reduction 34 (2019) 283-294. DOI: https://doi.org/10.1016/j.ijdrr.2018.12.002
[12] Dataset of weather of Bangladesh containing 65 years of data, https://www.kaggle.com/datasets/emonreza/65-years-of-weather-data-bangladesh-preprocessed, [25.10.2024].
[13] Dataset of floods prediction in Bangladesh containing 65 years of flood data along with weather data, https://github.com/n-gauhar/Flood-prediction, [25.10.2024].
[14] J. Leslie, ‘Seeing’ the Future: Improving Macroeconomic Forecasts with Spatial Data Using Recurrent Convolutional Neural Networks, CAEPR WORKING PAPER SERIES (2023) 1-21, http://dx.doi.org/10.2139/ssrn.4350048. DOI: https://doi.org/10.2139/ssrn.4350048
[15] B. Pan, K. Hsu, A. AghaKouchak, S. Sorooshian, Improving precipitation estimation using convolutional neural network, Water Resources Research 55(3) (2019) 2301-2321, https://doi.org/10.1029/2018WR024090. DOI: https://doi.org/10.1029/2018WR024090
[16] Y. Gong, Y. Zhang, F. Wang, C. H. Lee, Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data (2024), https://doi.org/10.48550/arXiv.2410.14963. DOI: https://doi.org/10.54254/2755-2721/99/20251758
[17] T. Akilan, K. M. Baalamurugan, Automated weather forecasting and field monitoring using GRU-CNN model along with IoT to support precision agriculture, Expert systems with applications 249 (2024), https://doi.org/10.1016/j.eswa.2024.123468. DOI: https://doi.org/10.1016/j.eswa.2024.123468
[18] R. Wu, Y. Liang, L. Lin, Z. Zhang, Spatiotemporal Multivariate Weather Prediction Network Based on CNN-Transformer, Sensors 24(23) (2024) 1-16, https://doi.org/10.3390/s24237837. DOI: https://doi.org/10.3390/s24237837
[19] X. Hu, Weather Phenomena Monitoring: Optimizing Solar Irradiance Forecasting with Temporal Fusion Transformer, IEEE Access (2024) 194133-194149, https://doi.org/10.1109/ACCESS.2024.3517144. DOI: https://doi.org/10.1109/ACCESS.2024.3517144
[20] R. Feng, H. J. Zheng, H. Gao, A. R. Zhang, C. Huang, J. X. Zhang, J. R. Fan, Recurrent Neural Network and random forest for analysis and accurate forecast of atmospheric pollutants: a case study in Hangzhou, China, Journal of cleaner production 231 (2019) 1005-1015, https://doi.org/10.1016/j.jclepro.2019.05.319. DOI: https://doi.org/10.1016/j.jclepro.2019.05.319
[21] P. Kumari, D. Toshniwal, Extreme gradient boosting and deep neural network based ensemble learning approach to forecast hourly solar irradiance, Journal of Cleaner Production 279 (2021), https://doi.org/10.1016/j.jclepro.2020.123285. DOI: https://doi.org/10.1016/j.jclepro.2020.123285
Article Details
Abstract views: 402

