Analysis of object recognition systems using augmented reality glasses
Article Sidebar
Open full text
Issue Vol. 34 (2025)
-
Impact of metrics on the effectiveness of Kohonen network clustering
Krystian Wypart, Edyta Łukasik1-7
-
Analysis of object recognition systems using augmented reality glasses
Jan Figura, Rafał Kuźmiczuk, Marcin Badurowicz8-13
-
Comparative analysis of selected data recovery software
Tomasz Szymczyk, Rafał Wróbel14-20
-
Usability analysis of graphic user interfaces for Internet forums with consideration for Universal Design Principles
Krystian Łęczycki, Jakub Łabendowicz, Maria Skublewska-Paszkowska21-28
-
Ergonomic analysis of book web services’ interfaces
Patrycja Kłodnicka, Dawid Matraszek29-35
-
Comparison of the effectiveness of tools for testing the security of web applications
Izabela Kaźmierak36-43
-
Comparative analysis of the performance of relational and non-relational databases in applications implemented in C#
Patryk Baliński, Łukasz Chudy, Maria Skublewska-Paszkowska44-53
-
Analysis of performance and energy efficiency of processors with hybrid architecture
Dawid Żytko, Marcin Badurowicz54-59
-
Analysis of user identification methods in web browsers
Eduard Chyzhik, Jakub Smołka60-67
-
Multi-aspect comparative analysis of JavaScript programming frameworks – React.js and Solid.js
Jakub Kryk, Małgorzata Plechawska-Wójcik68-75
-
Realization and discussion of selected artificial intelligence algorithms in computer games
Yurii Tyshchenko76-80
-
Comparative analysis of selected aspects of web application architectures
Łukasz Krzysztoń, Konrad Łatwiński, Małgorzata Plechawska-Wójcik81-88
-
Evaluation of deep learning models for flood forecasting in Bangladesh
Asif Rahman Rumee89-97
-
Optical character recognition for ancient scripts: a case study on Syloti Nagri using deep learning models
Tanzidul Islam, Sheikh Kamrul Hasan Omur, Nafiz Nahid, Lukman Chowdhury, Gourab Roy, Md. Abu Naser Mojumder, Md. Janibul Alam Soeb, Md. Fahad Jubayer98-107
-
Design of a non-human proctoring and authentication system for mobile phone-based online examination
Brendan Ubochi, Emmanuel Oluleye, Charity Odeyemi, Chinyere Ubochi108-112
Main Article Content
DOI
Authors
Abstract
Object recognition systems and augmented reality devices aim to bridge the gap between the virtual and real worlds. It is natural, then, to combine these two technologies to create devices that can assist us in various aspects of life. This paper compares four object detection models: Faster R-CNN ResNet-101 v1, YOLO v8s, SSD MobileNet v2, and EfficientDet Lite 2 in the context of their use with augmented reality glasses. Using a simulated test environment, we examined resource consumption, energy efficiency, precision, and speed of the models during real-time operation. The results confirm that models using single-stage architecture are more suitable for real-time operation directly on the device. Among the single-stage models, YOLO v8s proved to be the most efficient.
Keywords:
References
[1] D. Garcia, J. Carias, T. Adão, R. Jesus, A. Cunha, L.G. Magalhães, Ten Years of Active Learning Techniques and Object Detection: A Systematic Review, Applied Sciences 13(19) (2023) 10667-10696, https://doi.org/10.3390/app31910667. DOI: https://doi.org/10.3390/app131910667
[2] M. Carranza-García, J. Torres-Mateo, P. Lara-Benítez, J. García-Gutiérrez, On the Performance of One-Stage and Two-Stage Object Detectors in Autonomous Vehicles Using Camera Data, Remote Sensing 13(1) (2021) 89-112, https://doi.org/10.3390/rs13010089. DOI: https://doi.org/10.3390/rs13010089
[3] J. Brownlee, A Gentle Introduction to Object Recognition With Deep Learning, https://machinelearningmastery.com/object-recognition-with-deep-learning/, [02.10.2024].
[4] R. Gandhi, R-CNN, Fast R-CNN, Faster R-CNN, YOLO Object Detection Algorithms, Towards Data Science, https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e, [02.10.2024].
[5] How single-shot detector (SSD) works? ArcGIS API for Python, https://developers.arcgis.com/python/guide/how-ssd-works/, [02.10.2024].
[6] N. Zendehdel, H. Chen, M. Leu, Real-time tool detection in smart manufacturing using You-Only-Look-Once (YOLO)v5, Manufacturing Letters 35 Supplement (2023) 1052-1059, https://doi.org/10.1016/j.mfglet.2023.08.062. DOI: https://doi.org/10.1016/j.mfglet.2023.08.062
[7] J.C. Arbeláez, On object recognition for industrial augmented reality, PhD dissertation, Politecnico di Milano, Milan, 2018.
[8] J. Estrada, P. Sidike, Y. Xiaoli, N. Quamar, Deep-Learning-Incorporated Augmented Reality Application for Engineering Lab Training, Applied Sciences 12(10) (2022) 5159-5178, https://doi.org/10.3390/app12105159. DOI: https://doi.org/10.3390/app12105159
[9] M. Mukhiddinov, C. Jinsoo, Smart Glass System Using Deep Learning for the Blind and Visually Impaired, Electronics 10(22) (2021) 2756-2786, https://doi.org/10.3390/electronics10222756. DOI: https://doi.org/10.3390/electronics10222756
[10] Y. Ghasemi, H. Jeong, S.H. Choi, K. Park, J.Y. Lee, Deep learning-based object detection in augmented reality: A systematic review, Computers in Industry 139 (2022) 103661-103676, https://doi.org/10.1016/j.compind.2022.103661. DOI: https://doi.org/10.1016/j.compind.2022.103661
[11] M. Łysakowski, K. Żywanowski, A. Banaszczyk, M.R. Nowicki, P. Skrzypczyński, S.K. Tadeja, Real-time onboard object detection for augmented reality: Enhancing head-mounted display with yolov8, In 2023 IEEE International Conference on Edge Computing & Communications (EDGE), 364-371, https://doi.org/10.1109/EDGE60047.2023.00059. DOI: https://doi.org/10.1109/EDGE60047.2023.00059
[12] J. Moosmann, P. Bonazzi, Y. Li, S. Bian, P. Mayer, L. Benini, M. Magno. Ultra-efficient on-device object detection on ai-integrated smart glasses with tinyissimoyolo, arXiv digital preprint 2311.01057v2 (2023), https://arxiv.org/abs/2311.01057v2.
[13] S. Srivastava, A.V. Divekar, C. Anilkumar, I. Naik, V. Kulkarni, V. Pattabiraman, Comparative analysis of deep learning image detection algorithms, Journal of Big Data 8(1) (2021) 66-93, https://doi.org/10.1186/s40537-021-00434-w. DOI: https://doi.org/10.1186/s40537-021-00434-w
[14] J. Atlas, J. Svensson, Object Recognition in Augmented Reality, Master thesis, Lund University, Lund, 2018.
[15] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C. Zitnick, Microsoft COCO: Common Objects in Context, In Computer Vision - ECCV (8693) (2014) 740-755, https://doi.org/10.1007/978-3-319-10602-1_48. DOI: https://doi.org/10.1007/978-3-319-10602-1_48
Article Details
Abstract views: 316

