Optical character recognition for ancient scripts: a case study on Syloti Nagri using deep learning models
Article Sidebar
Open full text
Issue Vol. 34 (2025)
-
Impact of metrics on the effectiveness of Kohonen network clustering
Krystian Wypart, Edyta Łukasik1-7
-
Analysis of object recognition systems using augmented reality glasses
Jan Figura, Rafał Kuźmiczuk, Marcin Badurowicz8-13
-
Comparative analysis of selected data recovery software
Tomasz Szymczyk, Rafał Wróbel14-20
-
Usability analysis of graphic user interfaces for Internet forums with consideration for Universal Design Principles
Krystian Łęczycki, Jakub Łabendowicz, Maria Skublewska-Paszkowska21-28
-
Ergonomic analysis of book web services’ interfaces
Patrycja Kłodnicka, Dawid Matraszek29-35
-
Comparison of the effectiveness of tools for testing the security of web applications
Izabela Kaźmierak36-43
-
Comparative analysis of the performance of relational and non-relational databases in applications implemented in C#
Patryk Baliński, Łukasz Chudy, Maria Skublewska-Paszkowska44-53
-
Analysis of performance and energy efficiency of processors with hybrid architecture
Dawid Żytko, Marcin Badurowicz54-59
-
Analysis of user identification methods in web browsers
Eduard Chyzhik, Jakub Smołka60-67
-
Multi-aspect comparative analysis of JavaScript programming frameworks – React.js and Solid.js
Jakub Kryk, Małgorzata Plechawska-Wójcik68-75
-
Realization and discussion of selected artificial intelligence algorithms in computer games
Yurii Tyshchenko76-80
-
Comparative analysis of selected aspects of web application architectures
Łukasz Krzysztoń, Konrad Łatwiński, Małgorzata Plechawska-Wójcik81-88
-
Evaluation of deep learning models for flood forecasting in Bangladesh
Asif Rahman Rumee89-97
-
Optical character recognition for ancient scripts: a case study on Syloti Nagri using deep learning models
Tanzidul Islam, Sheikh Kamrul Hasan Omur, Nafiz Nahid, Lukman Chowdhury, Gourab Roy, Md. Abu Naser Mojumder, Md. Janibul Alam Soeb, Md. Fahad Jubayer98-107
-
Design of a non-human proctoring and authentication system for mobile phone-based online examination
Brendan Ubochi, Emmanuel Oluleye, Charity Odeyemi, Chinyere Ubochi108-112
Main Article Content
DOI
Authors
Abstract
This study proposes a novel OCR system for the Syloti Nagri script, addressing the complexities of segmenting and classifying its unique characters. Given the limited annotated data and intricate structures, a tri-level segmentation approach was applied, involving line, word, and character segmentation. Deep learning models-VGG16, VGG-19, ResNet-50, MobileNet-v3, and Xception, were evaluated, with VGG-19 achieving the highest scores in accuracy, precision, recall, and F1 metrics. The segmentation process attained 98% accuracy for word and 94% for character segmentation, while the classification model reached a test accuracy of 99.78%, demonstrating robust recognition of complex patterns. This work advances OCR technology and supports the preservation and accessibility of the Nagri script.
Keywords:
References
[1] M. Avadesh, N. Goyal, Optical character recognition for Sanskrit using convolution neural networks, In 2018 13th IAPR international workshop on document analysis sys-tems (DAS) (2018) 447-452, https://doi.org/10.1109/DAS.2018.50 DOI: https://doi.org/10.1109/DAS.2018.50
[2] A. Qaroush, A. Awad, M. Modallal, M. Ziq, Segmenta-tion-based, omnifont printed Arabic character recognition without font identification, Journal of King Saud Univer-sity-Computer and Information Sciences 34(6) (2022) 3025-3039, https://doi.org/10.1016/j.jksuci.2020.10.001 DOI: https://doi.org/10.1016/j.jksuci.2020.10.001
[3] M. A. Radwan, M. I. Khalil, H. M. Abbas, Neural net-works pipeline for offline machine printed Arabic OCR, Neural Processing Letters 48(2) (2018) 769-787, https://doi.org/10.1007/s11063-017-9727-y DOI: https://doi.org/10.1007/s11063-017-9727-y
[4] M. A. Mojumder, A. Islam, T. Islam, S. Das, Z. Chow-dhury, A. Rahman, Bangla and Nagri Language Detection and Classification Using Deep Learning Methods on Text Document Image, In 2023 International Conference on Advances in Electronics, Communication, Computing and Intelligent Information Systems (ICAECIS) (2023) 480-485. https://doi.org/10.1109/ICAECIS58353.2023.10170588 DOI: https://doi.org/10.1109/ICAECIS58353.2023.10170588
[5] M. Nihal Baig, N. Alam Owishi, M. Shahidur Rahman, A SAR-Based Approach to Recognize Text in Syloti Nagri, in 2023 6th International Conference on Electrical Infor-mation and Communication Technology (EICT) (2023) 1-6, https://doi.org/10.1109/EICT61409.2023.10427969 DOI: https://doi.org/10.1109/EICT61409.2023.10427969
[6] S. Alghyaline, Arabic Optical Character Recognition: A Review, CMES-Computer Modelling in Engineering & Sciences 135(3) (2023) 1825-1861, http://dx.doi.org/10.32604/cmes.2022.024555 DOI: https://doi.org/10.32604/cmes.2022.024555
[7] S. Faizullah, M. Sohaib Ayub, S. Hussain, M. Asad Khan, A survey of OCR in Arabic language: applications, techniques, and challenges, Applied Sciences 13(7) (2023) 4584, https://doi.org/10.3390/app13074584 DOI: https://doi.org/10.3390/app13074584
[8] T. Kumar, C. Khosla, K. Vashistha, Character recognition techniques using machine learning: A comprehensive study, In 2023 International Conference on Applied Intelligence and Sustainable Computing (ICAISC), (2023) 1-6, https://doi.org/10.1109/ICAISC58445.2023.10199173 DOI: https://doi.org/10.1109/ICAISC58445.2023.10199173
[9] B. Kataria, H. B. Jethva, CNN-bidirectional LSTM based optical character recognition of Sanskrit manuscripts: A comprehensive systematic literature review, Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol 5(2) (2019) 2456-3307, https://doi.org//10.32628/CSEIT2064126 DOI: https://doi.org/10.32628/CSEIT2064126
[10] A. Raj, R. Srivastava, T. Patnaik, B. Kumar, A survey of feature extraction and classification techniques used in character recognition for Indian scripts, International Journal of Engineering and Advanced Technology 2(3) (2013) 566-568.
[11] Z. Wang, Ancient character recognition with deep learning techniques, Applied and Computational Engineering 9 (2023) 194-203, https://doi.org/10.54254/2755-2721/9/20230089 DOI: https://doi.org/10.54254/2755-2721/9/20230089
[12] M. Fahad Jubayer, F. Mahafuz Ruhad, M. Shahidullah Kayshar, Z. Rizve, M. Janibul Alam Soeb, S. Izlal, I. Md Meftaul, Detection and Identification of Honey Pollens by YOLOv7: A Novel Framework toward Honey Au-thenticity, ACS Agricultural Science & Technology 4(7) (2024) 747-758, https://doi.org/10.1021/acsagscitech.4c00220 DOI: https://doi.org/10.1021/acsagscitech.4c00220
[13] S. Rabby, F. Hossain, S. Das, I. Rahman, S. Das, J. Soeb, M. Fahad Jubayer, An automated approach for the kidney segmentation and detection of kidney stones on computed tomography using YOLO algorithms, Journal of Ideas in Health 6(4) (2023) 963-970, https://doi.org/10.47108/jidhealth.Vol6.Iss4.313 DOI: https://doi.org/10.47108/jidhealth.Vol6.Iss4.313
[14] P. Patil, K. Noronha, Character Segmentation of Devna-gari Script in Printed Document Images using Projection Profiles, In 2023 International Conference on Communi-cation System, Computing and IT Applications (CSCI-TA), (2023) 158-163, https://doi.org/10.1109/CSCITA55725.2023.10104858 DOI: https://doi.org/10.1109/CSCITA55725.2023.10104858
[15] A. Jindal, R. Ghosh, Word and character segmentation in ancient handwritten documents in Devanagari and Maithili scripts using horizontal zoning, Expert Systems with Applications 225 (2023) 120127, https://doi.org/10.1016/j.eswa.2023.120127 DOI: https://doi.org/10.1016/j.eswa.2023.120127
[16] Z. N. Ashani, I. Syfidza Che Ilias, K. Yap Ng, M. Rezal Kamel Ariffin, A. Dahari Jarno, N. Zarina Zamri, Com-parative analysis of deepfake image detection method us-ing vgg16, vgg19 and resnet50, Journal of Advanced Re-search in Applied Sciences and Engineering Technology 47(1) (2024) 16-28, https://doi.org/10.37934/araset.47.1.1628 DOI: https://doi.org/10.37934/araset.47.1.1628
[17] D. Hindarto, N. Afarini, Comparison Efficacy of VGG16 and VGG19 Insect Classification Models, Jurnal In-formatika dan Komputer 6(3) (2023) 189-195, https://doi.org/10.33387/jiko.v6i3.7008 DOI: https://doi.org/10.33387/jiko.v6i3.7008
[18] M. Mateen, J. Wen, Nasrullah, S. Song, Z. Huang, Fun-dus image classification using VGG-19 architecture with PCA and SVD, Symmetry 11(1) (2018) 1, https://doi.org/10.3390/sym11010001 DOI: https://doi.org/10.3390/sym11010001
[19] M. Manataki, N. Papadopoulos, N. Schetakis, A. Di Iorio, Exploring Deep Learning Models on GPR Data: A Comparative Study of AlexNet and VGG on a Dataset from Archaeological Sites, Remote Sensing 15(12) (2023) 3193, https://doi.org/10.3390/rs15123193 DOI: https://doi.org/10.3390/rs15123193
[20] M. Shaha, M. Pawar, Transfer learning for image classi-fication, In 2018 second international conference on elec-tronics, communication and aerospace technology (ICE-CA) (2018) 656-660, https://doi.org/10.1109/ICECA.2018.8474802 DOI: https://doi.org/10.1109/ICECA.2018.8474802
[21] S. Devendiran, P. Nedungadi, R. Raman, Handwritten Text Recognition using VGG19 and HOG Feature De-scriptors, In 2024 IEEE International Conference on In-terdisciplinary Approaches in Technology and Manage-ment for Social Innovation (IATMSI) (2024) 1-4, https://doi.org/10.1109/IATMSI60426.2024.10502872 DOI: https://doi.org/10.1109/IATMSI60426.2024.10502872
[22] S. Zahoor, S. Naz, N. H. Khan, M. I. Razzak, Deep optical character recognition: a case of Pashto language, Journal of Electronic Imaging 29(2) (2020) 023002, https://doi.org/10.1117/1.JEI.29.2.023002 DOI: https://doi.org/10.1117/1.JEI.29.2.023002
[23] R. Gautam, R. Parajuli, and G. Sharma, Devanagari Handwritten Character Recognition using fine-tuned Deep Convolution Neural Network, International Journal of Research Publications 146(1) (2024) 327-335, https://doi.org/10.47119/IJRP1001461420246272 DOI: https://doi.org/10.47119/IJRP1001461420246272
[24] F. Jubayer, J. Alam Soeb, A. Naser Mojumder, M. Kanti Paul, P. Barua, S. Kayshar, S. Sabrina Akter, M. Rahman, A. Islam, Detection of mold on the food surface using YOLOv5, Current Research in Food Science 4 (2021) 724-728, https://doi.org/10.1016/j.crfs.2021.10.003 DOI: https://doi.org/10.1016/j.crfs.2021.10.003
[25] K. Liang, L. Jin, Z. Xie, X. Xiao, and W. Huang, A com-prehensive analysis of misclassified handwritten Chinese character samples by incorporating human recognition, In 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1 (2017) 460-465, https://doi.org/10.1109/ICDAR.2017.82 DOI: https://doi.org/10.1109/ICDAR.2017.82
[26] I. Markoulidakis, and G. Markoulidakis, Probabilistic Confusion Matrix: A Novel Method for Machine Learning Algorithm Generalized Performance Analysis, Tech-nologies 12(7) (2024) 113, https://doi.org/10.3390/technologies12070113 DOI: https://doi.org/10.3390/technologies12070113
Article Details
Abstract views: 376

