Comparative analysis of selected programs for optical text recognition
Article Sidebar
Open full text
Published:
Sep 30, 2018
Issue Vol. 7 (2018)
Articles
-
Web application development using ASP.NET MVC and JavaServer Faces
Mariia Radutina, Beata Pańczyk102-107
-
Performance and possibility analysis of Laravel tool dedicated to create modern web applications
Przemysław Mincewicz, Małgorzata Plechawska-Wójcik108-115
-
Comparison of performance of game engines across various platforms
Paweł Skop116-119
-
Comparative analysis of selected human-computer interfaces
Kamil Bartosz Podkowiak, Damian Burak, Tomasz Szymczyk120-125
-
Developing application in JavaScript - comparison of commercial and open source solution
Patrycja Jabłońska126-131
-
Comparison of Wordpress Woocommerce with Magento Community Edition
Cezary Cichocki132-137
-
Analysis of query execution speed in the selected NoSQL databases
Wojciech Bolesta138-141
-
The use of .NET Core in web applications development
Ewelina Piątkowska, Katarzyna Wąsik, Małgorzata Plechawska-Wójcik142-149
-
Analysis of protection capabilities against SQL Injection attacks
Bogdan Krawczyński, Jarosław Marucha, Grzegorz Kozieł150-157
-
Effectiveness Comparison of the AngularJS and Meteor frameworks
Oleksandr Chornyi, Marek Miłosz158-161
-
Efficiency analysis of the Ionic 2 platform
Robert Pyć, Małgorzata Plechawska-Wójcik162-167
-
Performance comparison between Xamarin and Java database operations
Oleh Datsko, Elżbieta Miłosz168-171
-
Comparative analysis of reactions to visual and auditory stimuli in research on EEG evoked potentials
Łukasz Tyburcy, Małgorzata Plechawska-Wójcik172-177
-
Usability analysis of AngularJS framework in the context of simple internet application
Krzysztof Pawelec178-182
-
Analysis of Xamarin capabilities for building mobile multi-platform applications
Michał Dras, Grzegorz Fila, Małgorzata Plechawska-Wójcik183-190
-
Comparative analysis of selected programs for optical text recognition
Edyta Łukasik, Tomasz Zientarski191-194
-
Comparison of web applications development possibilities in JEE environment by the example of Spring Boot and Vaadin
Beniamin Abramowicz, Beata Pańczyk195-199
-
A comparative analysis of selected Java Script frameworks in the context of web applications on the example of Angular and BackboneJS
Mateusz Moczulski, Małgorzata Plechawska-Wójcik200-204
-
Comparative analysis of the usage of Angular2 and Ember.js frameworks
Jan Palak, Małgorzata Plechawska-Wójcik205-209
-
Effectiveness of artificial neural networks in recognising handwriting characters
Marek Miłosz, Janusz Gazda210-214
Main Article Content
DOI
Authors
Edyta Łukasik
Institute of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland, Poland
Tomasz Zientarski
Institute of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland, Poland
Abstract
The aim of the article is to compare three programs for the optical text recognition. The problem of the optical text recognition has been defined. Next, briefly the functionality of this technology was described. The most important programs realizing the discussed problem were also characterized. The selected programs were tested using two samples of machine writing in Polish. The speed of the text recognition process was determined. The correctness of characters and words recognition in the analyzed text was also specified.
Keywords:
Optical Character Recognition; OCR; Tesseract; Ocrad; GOCR
References
[1] Bieniecki, Analiza wymagań dla metod przetwarzania wstępnego obrazów w automatycznym rozpoznawaniu tekstu, http://wbieniec.kis.p.lodz.pl/research/files/05_Bronislawow_OCR.pdf [12.11.2017].
[2] Tobias Blanke, Michael Bryant, Mark Hedges, Open source optical character recognition for historical research, Journal of Documentation 68 (2012), 659-683.
[3] Inad Aljarrah, Osama Al-Khaleel, Khaldoon Mhaidat, Mu’ath Alrefai, Abdullah Alzu’bi, Mohammad Rabab’ah, Automated System for Arabic Optical Character Recognition with Lookup Dictionary, Journal of Emerging Technologies in Web Intelligence 4 (2012), 362-370.
[4] Abbyy Technology Portal, https://abbyy.technology/en:start, [22.11.2017].
[5] The Tesseract open source OCR engine, http://code.google.com/p/tesseract-ocr [20.11.2017].
[6] https://products.aspose.com/ocr, [01.11.2017].
[7] GOCR open-source character recognition, http://jocr.sourceforge.net, [25.11.2017].
[8] www.gnu.org/software/ocrad/manual/ocrad_manual.html, [10.12.2017].
[9] Review of Linux OCR software, https://www.mathstat.dal.ca/~selinger/ocr-test [01.12.2017].
[10] Linux OCR Software Comparison, httpswww.splitbrain.org/blog/2010-06/15-linux_ocr_software_comparison, [02.12.2017].
[2] Tobias Blanke, Michael Bryant, Mark Hedges, Open source optical character recognition for historical research, Journal of Documentation 68 (2012), 659-683.
[3] Inad Aljarrah, Osama Al-Khaleel, Khaldoon Mhaidat, Mu’ath Alrefai, Abdullah Alzu’bi, Mohammad Rabab’ah, Automated System for Arabic Optical Character Recognition with Lookup Dictionary, Journal of Emerging Technologies in Web Intelligence 4 (2012), 362-370.
[4] Abbyy Technology Portal, https://abbyy.technology/en:start, [22.11.2017].
[5] The Tesseract open source OCR engine, http://code.google.com/p/tesseract-ocr [20.11.2017].
[6] https://products.aspose.com/ocr, [01.11.2017].
[7] GOCR open-source character recognition, http://jocr.sourceforge.net, [25.11.2017].
[8] www.gnu.org/software/ocrad/manual/ocrad_manual.html, [10.12.2017].
[9] Review of Linux OCR software, https://www.mathstat.dal.ca/~selinger/ocr-test [01.12.2017].
[10] Linux OCR Software Comparison, httpswww.splitbrain.org/blog/2010-06/15-linux_ocr_software_comparison, [02.12.2017].
Article Details
Abstract views: 390
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
