INNOVATIVE DEVICE FOR TENSILE STRENGTH TESTING OF WELDED JOINTS: 3D MODELLING, FEM SIMULATION AND EXPERIMENTAL VALIDATION OF TEST RIG – A CASE STUDY

Mateusz Sawa

mateusz.sawa1@pollub.edu.pl
Lublin University Of Technology, Mechanical Engineering Faculty, Department of Materials Engineering, Students Research Group of Materials Technology, Nadbystrzycka 36, 20-618 Lublin (Poland)

Mirosław Szala


Lublin University Of Technology, Mechanical Engineering Faculty, Department of Materials Engineering, Nadbystrzycka 36, 20-618 Lublin (Poland)

Weronika Henzler


Lublin University Of Technology, Mechanical Engineering Faculty, Department of Materials Engineering, Students Research Group of Materials Technology, Nadbystrzycka 36, 20-618 Lublin (Poland)

Abstract

This work shows a case study into 3D modelling, numerical simulations, and preliminary research of self-designed test rig dedicated for uniaxial tensile testing using pillar press. Innovative device was CAD modelled, FEM optimized, build-up according to the technological documentations. Then, the device utilization for tensile testing was validated via preliminary research. 3D model of the device was designed and FEM-analyzed using Solid Edge 2020 software. The set of FEM simulations for device components made of structural steel and stainless steel and at a workload equal 20 kN were conducted. This made it possible to optimize dimensions and selection of material used for individual parts of the device structure. Elaborated technical documentation allows for a build-up of a device prototype which was fixed into the pillar press. After that, the comparative preliminary experiments regarding tensile strength tests of X5CrNi18-10 (AISI 304) specimens were carried out. Tests were done using the commercial tensile strength machine and obtained results were compared with those received from an invented device. The ultimate tensile strength of X5CrNi18-10 steel, estimated using the commercial device (634 MPa) and results obtained from the patented device (620 MPa), were in the range of the standardized values. Findings confirm the utilization of the invented device for tensile strength testing.


Keywords:

tensile strength, FEM, CAD modelling, stainless steel, mechanical engineering

Amininejad, A., Jamaati, R., & Hosseinipour, S. J. (2019). Achieving superior strength and high ductility in AISI 304 austenitic stainless steel via asymmetric cold rolling. Materials Science and Engineering: A, 767, 138433. https://doi.org/10.1016/j.msea.2019.138433
DOI: https://doi.org/10.1016/j.msea.2019.138433   Google Scholar

Branco, R., Costa, J. D., Martins Ferreira, J. A., Capela, C., Antunes, F. V., & Macek, W. (2021). Multiaxial fatigue behaviour of maraging steel produced by selective laser melting. Materials & Design, 201, 109469. https://doi.org/10.1016/j.matdes.2021.109469
DOI: https://doi.org/10.1016/j.matdes.2021.109469   Google Scholar

Caban, J., Nieoczym, A., & Gardyński, L. (2021). Strength analysis of a container semi-truck frame. Engineering Failure Analysis, 127, 105487. https://doi.org/10.1016/j.engfailanal.2021.105487
DOI: https://doi.org/10.1016/j.engfailanal.2021.105487   Google Scholar

Dziubińska, A., Surdacki, P., Winiarski, G., Bulzak, T., Majerski, K., & Piasta, M. (2021). Analysis of the New Forming Process of Medical Screws with a Cylindrical Head of 316 LVM Steel. Materials, 14(4), 710. https://doi.org/10.3390/ma14040710
DOI: https://doi.org/10.3390/ma14040710   Google Scholar

EN 10088-2:2014 – Stainless steels. Part 2: Technical delivery conditions for sheet/plate and strip for general purposes. (2014). ISO.
  Google Scholar

Estrada, Q., Szwedowicz, D., Vergara, J., Solis, J., Paredes, M., Wiebe, L., & Silva, J. (2019). Numerical simulations of sandwich structures under lateral compression. Applied Computer Science, 15(2), 31–41. https://doi.org/10.23743/acs-2019-11
  Google Scholar

Falkowicz, K., Ferdynus, M., & Wysmulski, P. (2015). FEM analysis of critical loads plate with cut-out. Applied Computer Science, 11(2), 43-49.
  Google Scholar

Ha, H.-Y., Jang, J. H., Lee, T.-H., Won, C., Lee, C.-H., Moon, J., & Lee, C.-G. (2018). Investigation of the Localized Corrosion and Passive Behavior of Type 304 Stainless Steels with 0.2–1.8 wt % B. Materials, 11(11), 2097. https://doi.org/10.3390/ma11112097
DOI: https://doi.org/10.3390/ma11112097   Google Scholar

Haizhou, W. (2020). Geosynthetic material tensile strength detection device for hydraulic engineering detection. CN212254881 (U), 2020-12-29, Tianjin Xinan Eng Testing Co Ltd.
  Google Scholar

Hamidah, I., Wati, R., & Hamdani, R. A. (2018). Analysis of AISI 304 Tensile Strength as an Anchor Chain of Mooring System. IOP Conference Series: Materials Science and Engineering, 367, 012058. https://doi.org/10.1088/1757-899X/367/1/012058
DOI: https://doi.org/10.1088/1757-899X/367/1/012058   Google Scholar

ISO 4136:2012 Destructive tests on welds in metallic materials—Transverse tensile test. (2012). ISO.
  Google Scholar

ISO 6892-1: Metallic materials – Tensile testing – Part 1: Method of test at room temperature. (2010). ISO.
  Google Scholar

Janeczek, A., Tomków, J., & Fydrych, D. (2021). The Influence of Tool Shape and Process Parameters on the Mechanical Properties of AW-3004 Aluminium Alloy Friction Stir Welded Joints. Materials, 14(12), 3244. https://doi.org/10.3390/ma14123244
DOI: https://doi.org/10.3390/ma14123244   Google Scholar

Jonak, J., Karpiński, R., & Wójcik, A. (2021). Influence of the Undercut Anchor Head Angle on the Propagation of the Failure Zone of the Rock Medium—Part II. Materials, 14(14), 3880. https://doi.org/10.3390/ma14143880
DOI: https://doi.org/10.3390/ma14143880   Google Scholar

Kawecki, B., & Podgórski, J. (2017). Numerical results quality in dependence on abaqus plane stress elements type in big displacements compression test. Applied Computer Science, 13(4), 56–64. https://doi.org/10.23743/acs2017-29
  Google Scholar

Kilicaslan, M. F., Elburni, S. I., & Akgul, B. (2021). The Effects of Nb Addition on the Microstructure and Mechanical Properties of Melt Spun Al-7075 Alloy. Advances in Materials Science, 21(2), 16–25. https://doi.org/10.2478/adms-2021-0008
DOI: https://doi.org/10.2478/adms-2021-0008   Google Scholar

Kłonica, M. (2018). Analysis of the effect of selected factors on the strength of adhesive joints. IOP Conference Series: Materials Science and Engineering, 393, 012041. https://doi.org/10.1088/1757-899X/393/1/012041
DOI: https://doi.org/10.1088/1757-899X/393/1/012041   Google Scholar

Kowal, M., & Szala, M. (2020). Diagnosis of the microstructural and mechanical properties of over century-old steel railway bridge components. Engineering Failure Analysis, 110, 104447. https://doi.org/10.1016/j.engfailanal.2020.104447
DOI: https://doi.org/10.1016/j.engfailanal.2020.104447   Google Scholar

Lubas, M., & Witek, L. (2021). Influence of Hole Chamfer Size on Strength of Blind Riveted Joints. Advances in Science and Technology. Research Journal, 15(2), 49–56. https://doi.org/10.12913/22998624/135632
DOI: https://doi.org/10.12913/22998624/135632   Google Scholar

Lyalin Mikhajlovich, V., Zykov Mikhajlovich, S., & Sidorov Aleksandrovich, R. (2021). Installation for Dynamic Tensile Testing of Flat Samples of Materials. RU2744319 (C1). Federalnoe Gosudarstvennoe Byudzhetnoe Obrazovatelnoe Uchrezhdenie Vysshego Obrazovaniya Tulskij Gos.
  Google Scholar

Łabanowski, J., Jurkowski, M., Fydrych, D., & Rogalski, G. (2017). Durability of welded water supply pipelines made of austenitic stainless steels. Welding Technology Review, 89(8), 35–40. https://doi.org/10.26628/wtr.v89i8.801
DOI: https://doi.org/10.26628/ps.v89i8.801   Google Scholar

Macek, W., Branco, R., Trembacz, J., Costa, J. D., Ferreira, J. A. M., & Capela, C. (2020). Effect of multiaxial bending-torsion loading on fracture surface parameters in high-strength steels processed by conventional and additive manufacturing. Engineering Failure Analysis, 118, 104784. https://doi.org/10.1016/j.engfailanal.2020.104784
DOI: https://doi.org/10.1016/j.engfailanal.2020.104784   Google Scholar

Macek, W., Szala, M., Trembacz, J., Branco, R., & Costa, J. (2020). Effect of non-zero mean stress bendingtorsion fatigue on fracture surface parameters of 34CrNiMo6 steel notched bars. Production Engineering Archives, 26(4), 167-173. https://doi.org/10.30657/pea.2020.26.30
DOI: https://doi.org/10.30657/pea.2020.26.30   Google Scholar

Machrowska, A., Karpiński, R., Jonak, J., Szabelski, J., & Krakowski, P. (2020). Numerical prediction of the component-ratio-dependent compressive strength of bone cement. Applied Computer Science, 16(3), 88–101. https://doi.org/10.23743/acs-2020-24
  Google Scholar

Mahmood, M. A., Popescu, A. C., Oane, M., Chioibasu, D., Popescu-Pelin, G., Ristoscu, C., & Mihailescu, I. N. (2021). Grain refinement and mechanical properties for AISI304 stainless steel single-tracks by laser melting deposition: Mathematical modelling versus experimental results. Results in Physics, 22, 103880. https://doi.org/10.1016/j.rinp.2021.103880
DOI: https://doi.org/10.1016/j.rinp.2021.103880   Google Scholar

Nedeloni, M. D., Birtărescu, E., Nedeloni, L., Ene, T., Băra, A., & Clavac, B. (2018). Cavitation Erosion and Dry Sliding Wear Research on X5CrNi18-10 Austenitic Stainless Steel. IOP Conference Series: Materials Science and Engineering, 416, 012028. https://doi.org/10.1088/1757-899X/416/1/012028
DOI: https://doi.org/10.1088/1757-899X/416/1/012028   Google Scholar

Nowacki, J., Sajek, A., & Matkowski, P. (2016). The influence of welding heat input on the microstructure of joints of S1100QL steel in one-pass welding. Archives of Civil and Mechanical Engineering, 16(4), 777–783. https://doi.org/10.1016/j.acme.2016.05.001
DOI: https://doi.org/10.1016/j.acme.2016.05.001   Google Scholar

Pańcikiewicz, K., Świerczyńska, A., Hućko, P., & Tumidajewicz, M. (2020). Laser Dissimilar Welding of AISI 430F and AISI 304 Stainless Steels. Materials, 13(20), 4540. https://doi.org/10.3390/ma13204540
DOI: https://doi.org/10.3390/ma13204540   Google Scholar

Pezowicz, C., Szotek, S., Kobielarz, M., & Wudarczyk, S. (2016). Device for biaxial stretching of biological samples. PL412122 (A1), 2016-11-07, Wojewódzki Szpital Specjalistyczny We Wrocławiu.
  Google Scholar

Rout, M. (2020). Texture-tensile properties correlation of 304 austenitic stainless steel rolled with the change in rolling direction. Materials Research Express, 7(1), 016563. https://doi.org/10.1088/2053-1591/ab677c
DOI: https://doi.org/10.1088/2053-1591/ab677c   Google Scholar

Różyło, P., Wysmulski, P., & Falkowicz, K. (2017). Fem and Experimental Analysis of Thin-Walled Composite Elements Under Compression. International Journal of Applied Mechanics and Engineering, 22(2), 393–402. https://doi.org/10.1515/ijame-2017-0023
DOI: https://doi.org/10.1515/ijame-2017-0023   Google Scholar

Rudawska, A., Zaleski, K., Miturska, I., & Skoczylas, A. (2019). Effect of the Application of Different Surface Treatment Methods on the Strength of Titanium Alloy Sheet Adhesive Lap Joints. Materials, 12(24), 4173. https://doi.org/10.3390/ma12244173
DOI: https://doi.org/10.3390/ma12244173   Google Scholar

Sarre, B., Flouriot, S., Geandier, G., Panicaud, B., & de Rancourt, V. (2016). Mechanical behavior and fracture mechanisms of titanium alloy welded joints made by pulsed laser beam welding. Procedia Structural Integrity, 2, 3569–3576. https://doi.org/10.1016/j.prostr.2016.06.445
DOI: https://doi.org/10.1016/j.prostr.2016.06.445   Google Scholar

Skowrońska, B., Chmielewski, T., Kulczyk, M., Skiba, J., & Przybysz, S. (2021). Microstructural Investigation of a Friction-Welded 316L Stainless Steel with Ultrafine-Grained Structure Obtained by Hydrostatic Extrusion. Materials, 14(6), 1537. https://doi.org/10.3390/ma14061537
DOI: https://doi.org/10.3390/ma14061537   Google Scholar

Szala, M., Chocyk, D., Skic, A., Kamiński, M., Macek, W., & Turek, M. (2021). Effect of Nitrogen Ion Implantation on the Cavitation Erosion Resistance and Cobalt-Based Solid Solution Phase Transformations of HIPed Stellite 6. Materials, 14(9), 2324. https://doi.org/10.3390/ma14092324
DOI: https://doi.org/10.3390/ma14092324   Google Scholar

Szala, M., & Łukasik, D. (2018). Pitting Corrosion of the Resistance Welding Joints of Stainless Steel Ventilation Grille Operated in Swimming Pool Environment. International Journal of Corrosion, 2018, 9408670. https://doi.org/10.1155/2018/9408670
DOI: https://doi.org/10.1155/2018/9408670   Google Scholar

Szala, M., Sawa, M., & Walczak, M. (2021). Device for specimens uniaxially tensile strength tesitng (Urządzenie do statycznego, jednoosiowego rozciągania próbek) (Poland Patent Nr P.437489).
  Google Scholar

Szala, M., Szafran, M., Macek, W., Marchenko, S., & Hejwowski, T. (2019). Abrasion Resistance of S235, S355, C45, AISI 304 and Hardox 500 Steels with Usage of Garnet, Corundum and Carborundum Abrasives. Advances in Science and Technology. Research Journal, 13(4), 151–161. https://doi.org/10.12913/22998624/113244
DOI: https://doi.org/10.12913/22998624/113244   Google Scholar

Szala, M., Winiarski, G., Wójcik, Ł., & Bulzak, T. (2020). Effect of Annealing Time and Temperature Parameters on the Microstructure, Hardness, and Strain-Hardening Coefficients of 42CrMo4 Steel. Materials, 13(9), 2022. https://doi.org/10.3390/ma13092022
DOI: https://doi.org/10.3390/ma13092022   Google Scholar

Szklarek, K., & Gajewski, J. (2020). Optimisation of the Thin-Walled Composite Structures in Terms of Critical Buckling Force. Materials, 13(17), 3881. https://doi.org/10.3390/ma13173881
DOI: https://doi.org/10.3390/ma13173881   Google Scholar

Świć, A., Gola, A., Sobaszek, Ł., & Orynycz, O. (2020). Control of Machining of Axisymmetric Low-Rigidity. Parts. Materials, 13(21), 5053. https://doi.org/10.3390/ma13215053
DOI: https://doi.org/10.3390/ma13215053   Google Scholar

Zagórski, I., Kulisz, M., Kłonica, M., & Matuszak, J. (2019). Trochoidal Milling and Neural Networks Simulation of Magnesium Alloys. Materials, 12(13), 2070. https://doi.org/10.3390/ma12132070
DOI: https://doi.org/10.3390/ma12132070   Google Scholar

Zheng, C., Liu, C., Ren, M., Jiang, H., & Li, L. (2018). Microstructure and mechanical behavior of an AISI 304 austenitic stainless steel prepared by cold- or cryogenic-rolling and annealing. Materials Science and Engineering: A, 724, 260–268. https://doi.org/10.1016/j.msea.2018.03.105
DOI: https://doi.org/10.1016/j.msea.2018.03.105   Google Scholar

Żebrowski, R., Walczak, M., Korga, A., Iwan, M., & Szala, M. (2019). Effect of Shot Peening on the Mechanical Properties and Cytotoxicity Behaviour of Titanium Implants Produced by 3D Printing Technology. Journal of Healthcare Engineering, 2019, 8169538. https://doi.org/10.1155/2019/8169538
DOI: https://doi.org/10.1155/2019/8169538   Google Scholar

Download


Published
2021-09-30

Cited by

Sawa, M., Szala, M., & Henzler, W. (2021). INNOVATIVE DEVICE FOR TENSILE STRENGTH TESTING OF WELDED JOINTS: 3D MODELLING, FEM SIMULATION AND EXPERIMENTAL VALIDATION OF TEST RIG – A CASE STUDY. Applied Computer Science, 17(3), 92–105. https://doi.org/10.23743/acs-2021-24

Authors

Mateusz Sawa 
mateusz.sawa1@pollub.edu.pl
Lublin University Of Technology, Mechanical Engineering Faculty, Department of Materials Engineering, Students Research Group of Materials Technology, Nadbystrzycka 36, 20-618 Lublin Poland

Authors

Mirosław Szala 

Lublin University Of Technology, Mechanical Engineering Faculty, Department of Materials Engineering, Nadbystrzycka 36, 20-618 Lublin Poland

Authors

Weronika Henzler 

Lublin University Of Technology, Mechanical Engineering Faculty, Department of Materials Engineering, Students Research Group of Materials Technology, Nadbystrzycka 36, 20-618 Lublin Poland

Statistics

Abstract views: 202
PDF downloads: 0


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.