A DEEP ENSEMBLE LEARNING METHOD FOR EFFORT-AWARE JUST-IN-TIME DEFECT PREDICTION
Saleh ALBAHLI
salbahli@qu.edu.saQassim University, College of Computer, Department of Information Technology (Saudi Arabia)
Abstract
Nowadays, logistics for transportation and distribution of merchandise are a key element to increase the competitiveness of companies. However, the election of alternative routes outside the panned routes causes the logistic companies to provide a poor-quality service, with units that endanger the appropriate deliver of merchandise and impacting negatively the way in which the supply chain works. This paper aims to develop a module that allows the processing, analysis and deployment of satellite information oriented to the pattern analysis, to find anomalies in the paths of the operators by implementing the algorithm TODS, to be able to help in the decision making. The experimental results show that the algorithm detects optimally the abnormal routes using historical data as a base.
Keywords:
Deep Neural Network, unlabeled dataset, Just-In-Time defect prediction, unsupervised predictionReferences
Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785–794). ACM. https://doi.org/10.1145/2939672.2939785
DOI: https://doi.org/10.1145/2939672.2939785
Google Scholar
Hata, H., Mizuno, O., & Kikuno, T. (2012). Bug prediction based on fine-grained module histories. In Proceedings of the 34th International Conference on Software Engineering (pp. 200–210). IEEE Press.
DOI: https://doi.org/10.1109/ICSE.2012.6227193
Google Scholar
Huang, Q., Xia, X., & Lo, D. (2019). Revisiting supervised and unsupervised models for effortaware just-in-time defect prediction. Empirical Software Engineering, 24(5), 2823–2862. https://doi.org/10.1007/s10664-018-9661-2
DOI: https://doi.org/10.1007/s10664-018-9661-2
Google Scholar
Kamei, Y., Matsumoto, S., Monden, A., Matsumoto, K.I., Adams, B., & Hassan, A. E. (2010). Revisiting common bug prediction findings using effort-aware models. In 2010 IEEE International Conference on Software Maintenance (pp. 1–10). IEEE. https://doi.org/10.1109/ICSM.2010.5609530
DOI: https://doi.org/10.1109/ICSM.2010.5609530
Google Scholar
Kamei, Y., Shihab, E., Adams, B., Hassan, A.E., Mockus, A., Sinha, A., & Ubayashi, N. (2012). A large-scale empirical study of just-in-time quality assurance. IEEE Transactions on Software Engineering, 39(6), 57–773. http://doi.org/10.1109/TSE.2012.70
DOI: https://doi.org/10.1109/TSE.2012.70
Google Scholar
Liu, C., Yang, D., Xia, X., Yan, M., & Zhang, X. (2018). Cross-Project Change-Proneness Prediction. In 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC) (Vol. 1, pp. 64–73). IEEE.
DOI: https://doi.org/10.1109/COMPSAC.2018.00017
Google Scholar
Mockus, A., & Weiss, D.M. (2000). Predicting risk of software changes. Bell Labs Technical Journal, 5(2), 169–180.
DOI: https://doi.org/10.1002/bltj.2229
Google Scholar
Qiao, L., & Wang, Y. (2019). Effort-aware and just-in-time defect prediction with neural network. PloS one, 14(2), e0211359. https://doi.org/10.1371/journal.pone.0211359
DOI: https://doi.org/10.1371/journal.pone.0211359
Google Scholar
Yang, Y., Zhou, Y., Liu, J., Zhao, Y., Lu, H., Xu, L., ... & Leung, H. (2016). Effort-aware just-intime defect prediction: simple unsupervised models could be better than supervised models. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering (pp. 157–168). ACM. https://doi.org/10.1145/2950290.2950353
DOI: https://doi.org/10.1145/2950290.2950353
Google Scholar
Yu, T., Wen, W., Han, X., & Hayes, J. (2018). ConPredictor: Concurrency Defect Prediction in Real-World Applications. IEEE Transactions on Software Engineering, 45(6), 558–575. https://doi.org/10.1109/TSE.2018.2791521
DOI: https://doi.org/10.1109/TSE.2018.2791521
Google Scholar
Zhou, T., Sun, X., Xia, X., Li, B., & Chen, X. (2019). Improving defect prediction with deep forest. Information and Software Technology, 114, 204–216. https://doi.org/10.1016/j.infsof.2019.07.003
DOI: https://doi.org/10.1016/j.infsof.2019.07.003
Google Scholar
Authors
Saleh ALBAHLIsalbahli@qu.edu.sa
Qassim University, College of Computer, Department of Information Technology Saudi Arabia
Statistics
Abstract views: 340PDF downloads: 34
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Similar Articles
- Jerzy JÓZWIK, Magdalena ZAWADA-MICHAŁOWSKA, Monika KULISZ, Paweł TOMIŁO, Marcin BARSZCZ, Paweł PIEŚKO, Michał LELEŃ, Kamil CYBUL, MODELING THE OPTIMAL MEASUREMENT TIME WITH A PROBE ON THE MACHINE TOOL USING MACHINE LEARNING METHODS , Applied Computer Science: Vol. 20 No. 2 (2024)
- Qingyu Liu, Roben A. Juanatas, MASK FACE INPAINTING BASED ON IMPROVED GENERATIVE ADVERSARIAL NETWORK , Applied Computer Science: Vol. 19 No. 2 (2023)
- Anupa ARACHCHIGE, Ranil SUGATHADASA, Oshadhi HERATH, Amila THIBBOTUWAWA, ARTIFICIAL NEURAL NETWORK BASED DEMAND FORECASTING INTEGRATED WITH FEDERAL FUNDS RATE , Applied Computer Science: Vol. 17 No. 4 (2021)
- Haechan NA, Yoon Sang KIM, STUDY ON DEEP LEARNING MODELS FOR THE CLASSIFICATION OF VR SICKNESS LEVELS , Applied Computer Science: Vol. 20 No. 4 (2024)
- Behnaz ESLAMI, Mehdi HABIBZADEH MOTLAGH, Zahra REZAEI, Mohammad ESLAMI, Mohammad AMIN AMINI, UNSUPERVISED DYNAMIC TOPIC MODEL FOR EXTRACTING ADVERSE DRUG REACTION FROM HEALTH FORUMS , Applied Computer Science: Vol. 16 No. 1 (2020)
- Thanh-Lam BUI, Ngoc-Tien TRAN, NAVIGATION STRATEGY FOR MOBILE ROBOT BASED ON COMPUTER VISION AND YOLOV5 NETWORK IN THE UNKNOWN ENVIRONMENT , Applied Computer Science: Vol. 19 No. 2 (2023)
- Monika KULISZ, Aigerim DUISENBEKOVA, Justyna KUJAWSKA, Danira KALDYBAYEVA, Bibigul ISSAYEVA, Piotr LICHOGRAJ, Wojciech CEL, IMPLICATIONS OF NEURAL NETWORK AS A DECISION-MAKING TOOL IN MANAGING KAZAKHSTAN’S AGRICULTURAL ECONOMY , Applied Computer Science: Vol. 19 No. 4 (2023)
- Hanan M. SHUKUR, Shavan ASKAR, Subhi R.M. ZEEBAREE, THE UTILIZATION OF 6G IN INDUSTRY 4.0 , Applied Computer Science: Vol. 20 No. 2 (2024)
- Mahmoud BAKR, Sayed ABDEL-GABER, Mona NASR, Maryam HAZMAN, TOMATO DISEASE DETECTION MODEL BASED ON DENSENET AND TRANSFER LEARNING , Applied Computer Science: Vol. 18 No. 2 (2022)
- Sheikh Amir FAYAZ, Majid ZAMAN, Muheet Ahmed BUTT, Sameer KAUL, HOW MACHINE LEARNING ALGORITHMS ARE USED IN METEOROLOGICAL DATA CLASSIFICATION: A COMPARATIVE APPROACH BETWEEN DT, LMT, M5-MT, GRADIENT BOOSTING AND GWLM-NARX MODELS , Applied Computer Science: Vol. 18 No. 4 (2022)
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.