LIMITING VALUE OF COCKROFT-LATHAM INTEGRAL FOR COMMERCIAL PLASTICINE

Łukasz WÓJCIK

l.wojcik@pollub.pl
Lublin University of Technology, Nadbystrzycka Street 36, 20-618 Lublin, (Poland)

Zbigniew PATER


Lublin University of Technology, Nadbystrzycka Street 36, 20-618 Lublin, (Poland)

Abstract

The paper presents the results of experimental and numerical research in the scope of commercial plasticine cracking. The purpose of the study was to determine the limit value of the Cockroft-Latham integral. The value of the integral was determined on the basis of the stretching test and computer simulations. Experimental studies utilized axially symmetrical samples made of commercial black and white wax based plasticine. Samples were cooled to 0, 5, 10, 15 and 20 °C. After the completion of experimental studies, finite element numerical simulation was performed under the conditions of 3-dimensional state of deformation in DEFORM 3D simulation software. Based on the results of experimental and numerical studies, the Cockroft-Latham limit value was calculated.


Keywords:

physical modelling, Cockroft-Latham criterion, cross-wedge rolling

Altan, T., & Vazquez, V. (2000). New Concepts in die design – physical and computer modeling applications. Journalof Materials Processing Technology, 98, 212–223.
DOI: https://doi.org/10.1016/S0924-0136(99)00202-2   Google Scholar

Arikawa, T., & Kakimotoa, H. (2014). Prediction of surface crack in hot forging by numerical simulation. Procedia Engineering, 81, 474–479.
DOI: https://doi.org/10.1016/j.proeng.2014.10.025   Google Scholar

Assempour, A., & Razi, S. (2002). Determination of load and strain-stress distributions in hot closed die forging using the plasticine modeling technique. Archive of SID 2, 15, 167–172.
  Google Scholar

Assempour, A., & Razi, S. (2003). Physical modeling of extrusion process. Journal of Mechanical Ennineering, 4, 61–69.
  Google Scholar

Balasundar, I., Raghu, T., & Sudhakara, M. (2009). Equal channel angular pressing die to extrude a variety of materials. Materials and design, 30, 1050–1059. https://doi.org/10.1016/j.matdes.2008.06.057
DOI: https://doi.org/10.1016/j.matdes.2008.06.057   Google Scholar

Dębski, H., Lonkwic, P., & Rozylo, P. (2015). Numerical and experimental analysis of the progressive gear body with the use of finite-element method. Eksploatacja i Niezawodność –Main-tenance and Reliability, 17(4), 544–550.
DOI: https://doi.org/10.17531/ein.2015.4.9   Google Scholar

Dziubińska, A., & Gontarz, A. (2015). Limiting phenomena in a new forming process for two-rib plates. Metalurgija, 54(3), 555–558.
  Google Scholar

Fuertesa, J. P., Leóna, J., Luisa, C. J., Luria, R., Puertasa, I., & Salcedoa, D. (2015). Comparative study of the damage attained with different specimens by FEM. Procedia Engineering, 132, 319–325.
DOI: https://doi.org/10.1016/j.proeng.2015.12.501   Google Scholar

Gontarz, A., Łukasik, K., & Pater, Z. (2003). Technologia kształtowania i modelowania nowego procesu wytwarzania wkrętów szynowych. Lublin: Wydawnictwa Uczelniane Politechniki Lubelskiej.
  Google Scholar

Gontarz, A., & Piesiak, J. (2010). Model pękania według kryterium Cockrofta-Lathama dla stopu magnezu MA2 w warunkach kształtowania na gorąco. Obróbka Plastyczna Metali, 4, 217–227.
  Google Scholar

Gontarz, A., & Winiarski, G. (2015). Numerical and experimental study of producing flanges on hollowparts by extrusion with a movable sleeve. Archives of Metallurgy and Materials, 60, 1917–1921. https://doi.org/10.1515/amm-2015-0326
DOI: https://doi.org/10.1515/amm-2015-0326   Google Scholar

Komori, K., & Mizuno, K. (2009). Study on plastic deformation in cone type rotary piercing process using model piercing mill for modeling clay. Journal of Material Processing Technology, 209, 4994–5001. https://doi.org/10.1016/j.jmatprotec.2009.01.022
DOI: https://doi.org/10.1016/j.jmatprotec.2009.01.022   Google Scholar

Kowalczyk, L. (1995). Modelowanie fizykalne procesów obróbki plastycznej. Radom: Instytut Technologi I Eksploatacji.
  Google Scholar

Lis, K., Pater, Z., & Wojcik, L. (2016a). Plastometric tests for plasticine as physical modelling material. Open Engineering, 6, 653–659. https://doi.org/10.1515/eng-2016-0093
DOI: https://doi.org/10.1515/eng-2016-0093   Google Scholar

Lis, K., Pater, Z., & Wojcik, L. (2016b). Numerical analysis of a skew rolling process for producing a crankshaft preform. Open Engineering, 6, 581–584. https://doi.org/10.1515/eng-2016-0087
DOI: https://doi.org/10.1515/eng-2016-0087   Google Scholar

Moon, Y. H., & Van Tyne, C. J. (2000). Validation via FEM and plasticine modeling of upper bound criteria of a process induced side surface defect in forgings. Journal of Materials Processing Technology, 99, 185–196. https://doi.org/10.1016/S0924-0136(99)00417-3
DOI: https://doi.org/10.1016/S0924-0136(99)00417-3   Google Scholar

Pater, Z. (2010). Wartość graniczna całki Cockrofta-Lathama dla stali kolejowej gatunku R200. Hutnik, Wiadomości Hutnicze, 77(12), 702–705.
  Google Scholar

Pires, F. M. A., Song, N., & Wu, S. (2016). Numerical analysis of damage evolution for materials with tension-compression asymmetry. Procedia Structural Integrity, 1, 273–280. https://doi.org/10.1016/j.prostr.2016.02.037
DOI: https://doi.org/10.1016/j.prostr.2016.02.037   Google Scholar

Rasty, J., & Sofuoglu, H. (2000). Flow behavior of plasticine used in physical modeling of metal forming process. Tribology International, 33(8), 523–529. https://doi.org/10.1016/S0301-679X(00)00092-X
DOI: https://doi.org/10.1016/S0301-679X(00)00092-X   Google Scholar

Rozylo, P., & Wojcik, L. (2017). FEM and Experimental Based Analysis of the StampingProcess of Aluminum Alloy. Adv. Sci. Technol. Res. J., 11(3), 94–101. https://doi.org/10.12913/22998624/70691
DOI: https://doi.org/10.12913/22998624/70691   Google Scholar

Świątkowski, K. (1994a). Analiza badań modelowych z użyciem materiałów modelowych z użyciem materiałów woskowych. Obróbka Plastyczna Metali, 5, 5–14.
  Google Scholar

Świątkowski, K. (1994b). Własności mechaniczne woskowych materiałów modelowych. Obróbka Plastyczna, 5, 15–21.
  Google Scholar

Download


Published
2017-12-30

Cited by

WÓJCIK, Łukasz, & PATER, Z. (2017). LIMITING VALUE OF COCKROFT-LATHAM INTEGRAL FOR COMMERCIAL PLASTICINE. Applied Computer Science, 13(4), 45–55. https://doi.org/10.23743/acs-2017-28

Authors

Łukasz WÓJCIK 
l.wojcik@pollub.pl
Lublin University of Technology, Nadbystrzycka Street 36, 20-618 Lublin, Poland

Authors

Zbigniew PATER 

Lublin University of Technology, Nadbystrzycka Street 36, 20-618 Lublin, Poland

Statistics

Abstract views: 84
PDF downloads: 13


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Most read articles by the same author(s)

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.