TOWARDS DIGITAL TWIN-DRIVEN PERFORMANCE EVALUATION METHODOLOGY OF FMS
Grzegorz BOCEWICZ
grzegorz.bocewicz@tu.koszalin.plFaculty of Electronics and Computer Science, Koszalin University of Technology (Poland)
Robert WÓJCIK
Faculty of Information and Communication Technology, Wrocław University of Science and Technology, (Poland)
Paweł SITEK
Department of Information Systems, Kielce University of Technology, Kielce (Poland)
Zbigniew BANASZAK
Faculty of Electronics and Computer Science, Koszalin University of Technology (Poland)
Abstract
The paper presents a method of automated modelling and performance evaluation of concurrent production flows carried out in Flexible Manufacturing Systems. The method allows for quick assessment of various variants of such systems, considering their structure and the organization of production flow of possible ways of their implementation. Its essence is the conditions imposed on the designed model, limiting the space of possible variants of the production flow only to deadlock-free variants. The practical usefulness of the model implemented in the proposed method illustrates the example, which describes the simultaneous assessment of alternative variants of the flexible machining module's structure and the planned multi-assortment production. The ability of the method to focus on feasible solutions offers attractive perspectives for guiding the Digital Twin-like scenario in situations caused by the need to change the production flow.
Keywords:
FMS, Petri Nets, Performance evaluationReferences
Alexopoulos, K., Anagiannis, I., Nikolakis, N., & Chryssolouris, G. (2022). A quantitative approach to resilience in manufacturing systems. International Journal of Production Research, 60(13), 4342–4360.
DOI: https://doi.org/10.1080/00207543.2021.2018519
Google Scholar
Bakar, B. A., Henry, R. M., & Ali, M. (1991). An alternative approach in batch process control implementation using hierarchical Petri nets, World Scientific. Proc. of the International Conference on Computer Integrated Manufacturing (pp. 171–174).
Google Scholar
Banaszak, Z. (1992). Synchronisation of robots in flexible assembly systems. Archiwum Budowy Maszyn, 39(1–2), 117–133.
Google Scholar
Banaszak, Z., Skolud, B., & Zaremba, M. B. (2003). Computer-aided prototyping of production flows for virtual enterprise. Journal of Intelligent Manufacturing, 14, 83–106.
DOI: https://doi.org/10.1023/A:1022291313614
Google Scholar
Bocewicz, G., Wójcik, R., Witczak, M., & Banaszak, Z. (2022). Petri Net Approach to Automated Modelling and Performance Evaluation for Robotic Assembly Systems. 2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR) (pp. 306–311). IEEE. https://doi.org/10.1109/MMAR55195.2022.9874291
DOI: https://doi.org/10.1109/MMAR55195.2022.9874291
Google Scholar
Bujari, A., Calvio, A., Foschini, L., Sabbioni, A., & Corradi, A. (2021). A Digital Twin Decision Support System for the Urban Facility Management Process. Sensors, 21(24), 8460. https://doi.org/10.3390/s21248460
DOI: https://doi.org/10.3390/s21248460
Google Scholar
Claes, D., & Tuyls, K. (2018). Multi robot collision avoidance in a shared workspace. Autonomous Robots, 42, 1749–1770. https://doi.org/10.1007/s10514-018-9726-5
DOI: https://doi.org/10.1007/s10514-018-9726-5
Google Scholar
Coito, T., Faria, P., Martins, M. S. E., Firme, B., Vieira, S. M., Figueiredo, J., & Sousa, J. M. C. (2022). Digital Twin of a Flexible Manufacturing System for Solutions Preparation. Automation, 3(1), 153–175. https://doi.org/10.3390/automation3010008
DOI: https://doi.org/10.3390/automation3010008
Google Scholar
David, J., Lobov, A., & Lanz, M. (2018). Leveraging Digital Twins for Assisted Learning of Flexible Manufacturing Systems. 2018 IEEE 16th International Conference on Industrial Informatics (INDIN) (pp. 529-535). IEEE. https://doi.org/10.1109/INDIN.2018.8472083
DOI: https://doi.org/10.1109/INDIN.2018.8472083
Google Scholar
Hatono, I., Katoh, N., Yamagata, K., & Tamura, H. (1989). Modelling of FMS under uncertainty using stochastic Petri Nets. Proc. of the 3rd International Workshop on Petri nets and performance models (pp. 122–130).
Google Scholar
He, Z., Zhang, R., Ran, N., & Gu, C. (2022). Path Planning of Multi-Type Robot Systems with Time Windows Based on Timed Colored Petri Nets. Applied Science, 12(14), 6878. https://doi.org/10.3390/app12146878
DOI: https://doi.org/10.3390/app12146878
Google Scholar
Heiner, M. (1992). Petri net based software validation (prospects and limits), Technical report No. TR-92-022. International Computer Science Institute.
Google Scholar
Janardhanan, M. N., Li, Z., Bocewicz, G., Banaszak, Z., & Nielsen, P. (2019). Metaheuristic Algorithms for balancing robotic assembly lines with sequence-dependent robot setup times. Applied Mathematical Modelling, 65, 256–270.
DOI: https://doi.org/10.1016/j.apm.2018.08.016
Google Scholar
Jensen, K. (1987). Computer tools for construction, modification and analysis of Petri nets. Lecture Notes on Computer Science (No. 255). Springer Verlag.
DOI: https://doi.org/10.1007/3-540-17906-2_20
Google Scholar
Jonsson, P. (2000). An empirical taxonomy of advanced manufacturing technology. International Journal of Operations & Production Management, 20(12), 1446–1474.
DOI: https://doi.org/10.1108/01443570010353103
Google Scholar
Laemmle, A., & Gust, S. (2019). Automatic layout generation of robotic production cells in a 3D manufacturing simulation environment. Procedia CIRP, 84, 316–321.
DOI: https://doi.org/10.1016/j.procir.2019.04.207
Google Scholar
Makris, S., Michalos, G., & Chryssolouris, G. (2012). Virtual Commissioning of an Assembly Cell with Cooperating Robots. Advances in Decision Sciences, 2012, 428060. https://doi.org/10.1155/2012/428060
DOI: https://doi.org/10.1155/2012/428060
Google Scholar
Manu, G., Kumar, V. M., Nagesh, H., Jagadeesh, D., & Gowtham, M. B. (2018). Flexible Manufacturing Systems (FMS): A Review. International Journal of Mechanical and Production Engineering Research and Development, 8(2), 323–336.
DOI: https://doi.org/10.24247/ijmperdapr201836
Google Scholar
Neto, A. A., Carrijoa B. S., Brock, J. G. R, Deschamps, F., & Lima, E. P. (2021). Digital twin-driven decision support system for opportunistic preventive maintenance scheduling in manufacturing. Procedia Manufacturing, 55, 439–446.
DOI: https://doi.org/10.1016/j.promfg.2021.10.060
Google Scholar
Nielsen, L. D., Sung, I., & Nielsen, P. (2019). Convex Decomposition for a Coverage Path Planning for Autonomous Vehicles: Interior Extension of Edges. Sensors, 19(19), 4165. https://doi.org/10.3390/s19194165
DOI: https://doi.org/10.3390/s19194165
Google Scholar
Nielsen, P., Michna, Z., & Do, N. A. D. (2014). An Empirical Investigation of Lead Time Distributions. Advances in Production Management Systems. Innovative and Knowledge-Based Production Management in a Global-Local World. APMS 2014. IFIP Advances in Information and Communication Technology (vol. 438). Springer. https://doi.org/10.1007/978-3-662-44739-0_53
DOI: https://doi.org/10.1007/978-3-662-44739-0_53
Google Scholar
Patalas-Maliszewska, J., & Kłos, S. (2019). An Approach to Supporting the Selection of Maintenance Experts in the Context of Industry 4.0. Applied Sciences, 9(9), 1848. https://doi.org/10.3390/app9091848
DOI: https://doi.org/10.3390/app9091848
Google Scholar
Rachamadugu, R., & Stecke, K. E. (1994). Classification and review of FMS scheduling procedures. Production Planning & Control, 5(1), 2–20. https://doi.org/10.1080/09537289408919468
DOI: https://doi.org/10.1080/09537289408919468
Google Scholar
Recalde, L., Silva, M., Ezpeleta, J., & Teruel, E. (2022). Petri Nets and Manufacturing Systems: An ExamplesDriven Tour. ACPN 2003. Lecture Notes in Computer Science (vol. 3098). Springer. https://doi.org/10.1007/978-3-540-27755-2_21
DOI: https://doi.org/10.1007/978-3-540-27755-2_21
Google Scholar
Reisig, W. (1982). Petri nets. Springer Verlag. Reutenauer, Ch. (1988). The mathematics of Petri nets. Englewood Cliffs.
Google Scholar
Silva, E. B., Costa, M. G., Silva, M. F., & Pereira, F. H. (2012). Evaluation of Production Sequencing Rules in Job Shop and Flow Shop Environment through Computer Simulation. ICIEOM 2012 (no. 257).
Google Scholar
Sliwa, M., & Patalas-Maliszewska, J. (2016). A Strategic Knowledge Map for the Research and Development Department in a Manufacturing Company. Foundations of Management, 8(1), 151–166.
DOI: https://doi.org/10.1515/fman-2016-0012
Google Scholar
Stączek, P., Pizoń, J., Danilczuk, W., & Gola, A. (2021). A digital twin approach for the improvement of an autonomous mobile robots (AMR's) operating environment – a case study. Sensors, 21(23), 7830. https://doi.org/10.3390/s21237830
DOI: https://doi.org/10.3390/s21237830
Google Scholar
Świć, A., & Gola, A. (2013). Economic Analysis of Casing Parts Production in a Flexible Manufacturing System. Actual Problems of Economics, 141(3), 526–533.
Google Scholar
Vaisi, B. (2022). A review of optimization models and applications in robotic manufacturing systems: Industry 4.0 and beyond. Decision Analytics Journal, 2, 100031. https://doi.org/10.1016/j.dajour.2022.100031
DOI: https://doi.org/10.1016/j.dajour.2022.100031
Google Scholar
Van der Aalst, W. M. (1992). Timed coloured Petri nets and their application to logistics. Technische Universiteit Eindhoven.
DOI: https://doi.org/10.1007/3-540-56863-8_61
Google Scholar
Viswandham, N., & Narahari, Y. (1992). Performance modelling of automated manufacturing systems. Prentice-Hall.
Google Scholar
Yang, B., & Hu, H. (2022). Maximally Permissive Deadlock and Livelock Avoidance for Automated Manufacturing Systems via Critical Distance. In IEEE Transactions on Automation Science and Engineering. IEEE. https://doi.org/10.1109/TASE.2021.3138169
DOI: https://doi.org/10.1109/TASE.2021.3138169
Google Scholar
Zanchettin, A. M. (2021). Robust scheduling and dispatching rules for high-mix collaborative manufacturing systems. Flexible Services and Manufacturing Journal, 34, 293–316. https://doi.org/10.1007/s10696-021-09406-x
DOI: https://doi.org/10.1007/s10696-021-09406-x
Google Scholar
Zhang, F., Bai, J., & Yang, D. (2022). Digital twin data-driven proactive job-shop scheduling strategy towards asymmetric manufacturing execution decision. Scientific Reports, 12, 1546. https://doi.org/10.1038/s41598-022-05304-w
DOI: https://doi.org/10.1038/s41598-022-05304-w
Google Scholar
Zhou, K. Q., & Zain, A. M. (2016). Fuzzy Petri nets, and industrial applications: a review. Artificial Intelligence Review, 45(4), 405–446. https://doi.org/10.1007/s10462-015-9451-9
DOI: https://doi.org/10.1007/s10462-015-9451-9
Google Scholar
Authors
Grzegorz BOCEWICZgrzegorz.bocewicz@tu.koszalin.pl
Faculty of Electronics and Computer Science, Koszalin University of Technology Poland
Authors
Robert WÓJCIKFaculty of Information and Communication Technology, Wrocław University of Science and Technology, Poland
Authors
Paweł SITEKDepartment of Information Systems, Kielce University of Technology, Kielce Poland
Authors
Zbigniew BANASZAKFaculty of Electronics and Computer Science, Koszalin University of Technology Poland
Statistics
Abstract views: 283PDF downloads: 130
License
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Grzegorz RADZKI, Amila THIBBOTUWAWA, Grzegorz BOCEWICZ, UAVS FLIGHT ROUTES OPTIMIZATION IN CHANGING WEATHER CONDITIONS – CONSTRAINT PROGRAMMING APPROACH , Applied Computer Science: Vol. 15 No. 3 (2019)
- Janani DEWMINI, W Madushan FERNANDO, Izabela Iwa NIELSEN, Grzegorz BOCEWICZ, Amila THIBBOTUWAWA, Zbigniew BANASZAK, IDENTIFYING THE POTENTIAL OF UNMANNED AERIAL VEHICLE ROUTING FOR BLOOD DISTRIBUTION IN EMERGENCY REQUESTS , Applied Computer Science: Vol. 19 No. 4 (2023)
- Krzysztof NIEMIEC, Grzegorz BOCEWICZ, AN AUTHENTICATION METHOD BASED ON A DIOPHANTINE MODEL OF THE COIN BAG PROBLEM , Applied Computer Science: Vol. 20 No. 2 (2024)
- Jarosław WIKAREK, Paweł SITEK, Mieczysław JAGODZIŃSKI, A DECLARATIVE APPROACH TO SHOP ORDERS OPTIMIZATION , Applied Computer Science: Vol. 15 No. 4 (2019)
Similar Articles
- Bilal OWAIDAT, EXPLORING THE ACCURACY AND RELIABILITY OF MACHINE LEARNING APPROACHES FOR STUDENT PERFORMANCE , Applied Computer Science: Vol. 20 No. 3 (2024)
- Damian GIEBAS, Rafał WOJSZCZYK, GRAPHICAL REPRESENTATIONS OF MULTITHREADED APPLICATIONS , Applied Computer Science: Vol. 14 No. 2 (2018)
- Muaayed F. AL-RAWI, Izz K. ABBOUD, Nasir A. AL-AWAD, PERFORMANCE ANALYSIS AND EVALUATION OF MASSIVE MIMO SYSTEM , Applied Computer Science: Vol. 16 No. 2 (2020)
- Marcin Topczak, Małgorzata Śliwa, ASSESSMENT OF THE POSSIBILITY OF USING BAYESIAN NETS AND PETRI NETS IN THE PROCESS OF SELECTING ADDITIVE MANUFACTURING TECHNOLOGY IN A MANUFACTURING COMPANY , Applied Computer Science: Vol. 17 No. 1 (2021)
- Archana Gunakala, Afzal Hussain Shahid, A COMPARATIVE STUDY ON PERFORMANCE OF BASIC AND ENSEMBLE CLASSIFIERS WITH VARIOUS DATASETS , Applied Computer Science: Vol. 19 No. 1 (2023)
- Md. Torikur RAHMAN, Mohammad ALAUDDIN, Uttam Kumar DEY, Dr. A.H.M. Saifullah SADI, ADAPTIVE SECURE AND EFFICIENT ROUTING PROTOCOL FOR ENHANCE THE PERFORMANCE OF MOBILE AD HOC NETWORK , Applied Computer Science: Vol. 19 No. 3 (2023)
- Tilla IZSÁK, László MARÁK, Mihály ORMOS, EVALUATION OF SUPPORT VECTOR MACHINE BASED STOCK PRICE PREDICTION , Applied Computer Science: Vol. 19 No. 3 (2023)
- Erizal ERIZAL, Mohammad DIQI, PERFORMANCE EVALUATION OF STOCK PREDICTION MODELS USING EMAGRU , Applied Computer Science: Vol. 19 No. 3 (2023)
- Sara SALEHI, FUZZY MULTIPLE CRITERIA GROUP DECISION-MAKING IN PERFORMANCE EVALUATION OF MANUFACTURING COMPANIES , Applied Computer Science: Vol. 19 No. 3 (2023)
- Paweł KARPIŃSKI, THE INFLUENCE OF THE INJECTION TIMING ON THE PERFORMANCE OF TWO-STROKE OPPOSED-PISTON DIESEL ENGINE , Applied Computer Science: Vol. 14 No. 2 (2018)
You may also start an advanced similarity search for this article.