HYBRID FEATURE SELECTION AND SUPPORT VECTOR MACHINE FRAMEWORK FOR PREDICTING MAINTENANCE FAILURES

Mouna TARIK

tarik.mouna@gmail.com
Faculty of science and techniques (Morocco)
https://orcid.org/0009-0008-1603-0067

Ayoub MNIAI


LMA, FSTT, Abdelmalek Essaadi University, Tetouan (Morocco)
https://orcid.org/0009-0009-9189-3257

Khalid JEBARI


LMA, FSTT, Abdelmalek Essaadi University, Tetouan (Morocco)

Abstract

The main aim of predictive maintenance is to minimize downtime, failure risks and maintenance costs in manufacturing systems. Over the past few years, machine learning methods gained ground with diverse and successful applications in the area of predictive maintenance. This study shows that performing preprocessing techniques such as oversampling and features selection for failure prediction, is promising. For instance, to handle imbalanced data, the SMOTE-Tomek method is used. For features selection, three different methods can be applied: Recursive Feature Elimination, Random Forest and Variance Threshold. The data considered in this paper for simulation is used in literature; it is applied to aircraft engine sensors measurements to predict engines failure, while the predicting algorithm used is a Support Vector Machine. The results show that classification accuracy can be significantly boosted by using the preprocessing techniques.


Keywords:

Predictive Maintenance, Machine Learning, Features Selection, SMOTE-Tomek, Support Vector Machine

Mobley, R. K. (2002). An introduction to predictive maintenance. Elsevier.
DOI: https://doi.org/10.1016/B978-075067531-4/50006-3   Google Scholar

Wuest, T., Weimer, D., Irgens, C., & Thoben, K. D. (2016). Machine learning in manufacturing: advantages, challenges, and applications. Production & Manufacturing Research,4(1), 23-45.
DOI: https://doi.org/10.1080/21693277.2016.1192517   Google Scholar

Carvalho, T. P., Soares, F. A., Vita, R., Francisco, R. D. P., Basto, J. P., & Alcalá, S. G. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering,137, 106024. http://doi.org/10.1016/j.cie.2019.106024
DOI: https://doi.org/10.1016/j.cie.2019.106024   Google Scholar

Nacchia, M., Fruggiero, F., Lambiase, A., & Bruton, K. (2021). A systematic mapping of the advancing use of machine learning techniques for predictive maintenance in the manufacturing sector. Applied Sciences,11(6), 2546. http://doi.org/10.3390/app11062546
DOI: https://doi.org/10.3390/app11062546   Google Scholar

Yeh, C. H., Lin, M. H., Lin, C. H., Yu, C. E., & Chen, M. J. (2019). Machine learning for long cycle maintenance prediction of wind turbine. Sensors,19(7), 1671. http://doi.org/10.3390/s19071671
DOI: https://doi.org/10.3390/s19071671   Google Scholar

Traini, E., Bruno, G., D’antonio, G., & Lombardi, F. (2019). Machine learning framework for predictive maintenance in milling. IFAC-PapersOnLine, 52(13), 177-182. http://doi.org/10.1016/j.ifacol.2019.11.172
DOI: https://doi.org/10.1016/j.ifacol.2019.11.172   Google Scholar

Bekar, E. T., Nyqvist, P., & Skoogh, A. (2020). An intelligent approach for data pre-processing and analysis in predictive maintenance with an industrial case study. Advances in Mechanical Engineering, 12(5), 1687814020919207.
DOI: https://doi.org/10.1177/1687814020919207   Google Scholar

Fernandes, M., Canito, A., Bolón-Canedo, V., Conceição, L., Praça, I., & Marreiros, G. (2019). Data analysis and feature selection for predictive maintenance: A case-study in the metallurgic industry. International journal of information management, 46, 252-262.
DOI: https://doi.org/10.1016/j.ijinfomgt.2018.10.006   Google Scholar

Lai, S. T., & Leu, F. Y. (2017). Data preprocessing quality management procedure for improving big data applications efficiency and practicality. In Advances on Broad-Band Wireless Computing, Communication and Applications: Proceedings of the 11th International Conference On Broad-Band Wireless Computing, Communication and Applications (BWCCA–2016) November 5–7, 2016, Korea (pp. 731-738). Springer International Publishing. https://doi.org/10.1007/978-3-319-49106-6_73
DOI: https://doi.org/10.1007/978-3-319-49106-6_73   Google Scholar

Abidi, M. H., Mohammed, M. K., & Alkhalefah, H. (2022). Predictive maintenance planning for industry 4.0 using machine learning for sustainable manufacturing. Sustainability,14(6), 3387.
DOI: https://doi.org/10.3390/su14063387   Google Scholar

Estabrooks, A., Jo, T., & Japkowicz, N. (2004). A multiple resampling method for learning from imbalanced data sets. Computational intelligence, 20(1), 18-36.
DOI: https://doi.org/10.1111/j.0824-7935.2004.t01-1-00228.x   Google Scholar

Rendon, E., Alejo, R., Castorena, C., Isidro-Ortega, F. J., & Granda-Gutierrez, E. E. (2020). Data sampling methods to deal with the big data multi-class imbalance problem. Applied Sciences, 10(4), 1276. http://doi.org/10.3390/app10041276
DOI: https://doi.org/10.3390/app10041276   Google Scholar

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority oversampling technique. Journal of artificial intelligence research, 16, 321-357
DOI: https://doi.org/10.1613/jair.953   Google Scholar

He, H., Bai, Y., Garcia, E. A., & Li, S. (2008, June). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence) (pp. 1322-1328). IEEE.
  Google Scholar

Kotsiantis, S. B., & Pintelas, P. E. (2003). Mixture of expert agents for handling imbalanced data sets. Annals of Mathematics, Computing & Teleinformatics,1(1), 46-55.
  Google Scholar

Elhassan, T., & Aljurf, M. (2016). Classification of imbalance data using tomek link (t-link) combined with random under-sampling (rus) as a data reduction method. Global J Technol Optim S, 1, 2016.
DOI: https://doi.org/10.21767/2472-1956.100011   Google Scholar

Zhu, Y., Jia, C., Li, F., & Song, J. (2020). Inspector: a lysine succinylation predictor based on edited nearestneighbor undersampling and adaptive synthetic oversampling. Analytical biochemistry, 593, 113592. http://doi.org/10.1016/j.ab.2020.11359
DOI: https://doi.org/10.1016/j.ab.2020.113592   Google Scholar

Batista, G. E., Bazzan, A. L., & Monard, M. C. (2003, December). Balancing training data for automated annotation of keywords: a case study. In WOB (pp. 10-18).
  Google Scholar

Wang, Z. H. E., Wu, C., Zheng, K., Niu, X., & Wang, X. (2019). SMOTETomek-based resampling for personality recognition. Ieee Access,7, 129678-129689. http://doi.org/10.1109/ACCESS.2019.2940061
DOI: https://doi.org/10.1109/ACCESS.2019.2940061   Google Scholar

Huang, J., Li, Y. F., & Xie, M. (2015). An empirical analysis of data preprocessing for machine learning-based software cost estimation. Information and software Technology, 67, 108-127.
DOI: https://doi.org/10.1016/j.infsof.2015.07.004   Google Scholar

Jović, A., Brkić, K., & Bogunović, N. (2015, May). A review of feature selection methods with applications. In 2015 38th international convention on information and communication technology, electronics and microelectronics (MIPRO) (pp. 1200-1205). Ieee. http://doi.org/10.1109/MIPRO.2015.7160458
DOI: https://doi.org/10.1109/MIPRO.2015.7160458   Google Scholar

Liu, H., & Motoda, H. (Eds.). (1998). Feature extraction, construction and selection: A data mining perspective (Vol. 453). Springer Science & Business Media.
DOI: https://doi.org/10.1007/978-1-4615-5725-8   Google Scholar

Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16-28.
DOI: https://doi.org/10.1016/j.compeleceng.2013.11.024   Google Scholar

Bommert, A., Sun, X., Bischl, B., Rahnenführer, J., & Lang, M. (2020). Benchmark for filter methods for feature selection in high-dimensional classification data. Computational Statistics & Data Analysis, 143, 106839. http://doi.org/10.1016/j.csda.2019.106839
DOI: https://doi.org/10.1016/j.csda.2019.106839   Google Scholar

Huljanah, M., Rustam, Z., Utama, S., & Siswantining, T. (2019, June). Feature selection using random forest classifier for predicting prostate cancer. In IOP Conference Series: Materials Science and Engineering (Vol. 546, No. 5, p. 052031). IOP Publishing. http://doi.org/10.1088/1757-899X/546/5/052031
DOI: https://doi.org/10.1088/1757-899X/546/5/052031   Google Scholar

Aremu, O. O., Cody, R. A., Hyland-Wood, D., & McAree, P. R. (2020). A relative entropy based feature selection framework for asset data in predictive maintenance. Computers & Industrial Engineering, 145, 106536.. http://doi.org/10.1016/j.cie.2020.106536
DOI: https://doi.org/10.1016/j.cie.2020.106536   Google Scholar

Wang, J., Li, C., Han, S., Sarkar, S., & Zhou, X. (2017). Predictive maintenance based on event-log analysis: A case study. IBM Journal of Research and Development, 61(1), 11-121. http://doi.org/10.1147/jrd.2017.2648298
DOI: https://doi.org/10.1147/JRD.2017.2648298   Google Scholar

Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. http://doi.org/10.1023/A:1010933404324 Hasan, M. A. M., Nasser, M., Ahmad, S., & Molla, K. I. (2016). Feature selection for intrusion detection using random forest. Journal of information security, 7(3), 129-140. http://doi.org/10.4236/jis.2016.73009
DOI: https://doi.org/10.4236/jis.2016.73009   Google Scholar

Themistocleous, M., Papadaki, M., & Kamal, M. M. (Eds.). (2020). Information Systems: 17th European, Mediterranean, and Middle Eastern Conference, EMCIS 2020, Dubai, United Arab Emirates, November 25–26, 2020, Proceedings (Vol. 402). Springer Nature. http://doi.org/10.1007/978-3-030-63396-7
DOI: https://doi.org/10.1007/978-3-030-63396-7   Google Scholar

Granitto, P. M., Furlanello, C., Biasioli, F., & Gasperi, F. (2006). Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemometrics and intelligent laboratory systems, 83(2), 83-90. http://doi.org/10.1016/j.chemolab.2006.01.00
DOI: https://doi.org/10.1016/j.chemolab.2006.01.007   Google Scholar

Ambarwati, Y. S., & Uyun, S. (2020, December). Feature selection on magelang duck egg candling image using variance threshold method. In 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) (pp. 694-699). IEEE. http://doi.org/10.1109/isriti51436.2020.9315486
DOI: https://doi.org/10.1109/ISRITI51436.2020.9315486   Google Scholar

Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE transactions on neural networks, 10(5), 988-999.
DOI: https://doi.org/10.1109/72.788640   Google Scholar

Ravisankar, P., Ravi, V., Rao, G. R., & Bose, I. (2011). Detection of financial statement fraud and feature selection using data mining techniques. Decision support systems, 50(2), 491-500.
DOI: https://doi.org/10.1016/j.dss.2010.11.006   Google Scholar

Huang, Z., Chen, H., Hsu, C. J., Chen, W. H., & Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: a market comparative study. Decision support systems, 37(4), 543-558.
DOI: https://doi.org/10.1016/S0167-9236(03)00086-1   Google Scholar

Gohel, H. A., Upadhyay, H., Lagos, L., Cooper, K., & Sanzetenea, A. (2020). Predictive maintenance architecture development for nuclear infrastructure using machine learning. Nuclear Engineering and Technology, 52(7), 1436-1442. http://doi.org/10.1016/j.net.2019.12.029
DOI: https://doi.org/10.1016/j.net.2019.12.029   Google Scholar

Singla, M., & Shukla, K. K. (2020). Robust statistics-based support vector machine and its variants: a survey. Neural Computing and Applications, 32(15), 11173-11194.http://doi.org/10.1007/s00521-019- 04627-6
DOI: https://doi.org/10.1007/s00521-019-04627-6   Google Scholar

https://www.kaggle.com/datasets/nafisur/dataset-for-predictive-maintenance.
  Google Scholar

Tarik, M., & Jebari, K. (2020). Maintenance Prediction by Machine Learning: Study Review of Some Supervised Learning Algorithms. In Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management. Harare, Zimbabwe: IEOM Society International
  Google Scholar

Download


Published
2023-06-30

Cited by

TARIK, M., MNIAI, A., & JEBARI, K. (2023). HYBRID FEATURE SELECTION AND SUPPORT VECTOR MACHINE FRAMEWORK FOR PREDICTING MAINTENANCE FAILURES. Applied Computer Science, 19(2), 112–124. https://doi.org/10.35784/acs-2023-18

Authors

Mouna TARIK 
tarik.mouna@gmail.com
Faculty of science and techniques Morocco
https://orcid.org/0009-0008-1603-0067

Authors

Ayoub MNIAI 

LMA, FSTT, Abdelmalek Essaadi University, Tetouan Morocco
https://orcid.org/0009-0009-9189-3257

Authors

Khalid JEBARI 

LMA, FSTT, Abdelmalek Essaadi University, Tetouan Morocco

Statistics

Abstract views: 263
PDF downloads: 152


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.