DEVELOPING MACHINE LEARNING APPLICATION FOR EARLY CARDIOVASCULAR DISEASE (CVD) RISK DETECTION IN FIJI: A DESIGN SCIENCE APPROACH
Article Sidebar
Open full text
Issue Vol. 20 No. 3 (2024)
-
VIOLENCE PREDICTION IN SURVEILLANCE VIDEOS
Esraa Alaa MAHAREEK, Doaa Rizk FATHY, Eman Karm ELSAYED, Nahed ELDESOUKY, Kamal Abdelraouf ELDAHSHAN1-16
-
GAP FILLING ALGORITHM FOR MOTION CAPTURE DATA TO CREATE REALISTIC VEHICLE ANIMATION
Weronika WACH, Kinga CHWALEBA17-33
-
SEMANTIC SEGMENTATION OF ALGAL BLOOMS ON THE OCEAN SURFACE USING SENTINEL 3 CHL_NN BAND IMAGERY
Venkatesh BHANDAGE, Manohara PAI M. M.34-50
-
ADVANCED FRAUD DETECTION IN CARD-BASED FINANCIAL SYSTEMS USING A BIDIRECTIONAL LSTM-GRU ENSEMBLE MODEL
Toufik GHRIB, Yacine KHALDI, Purnendu Shekhar PANDEY, Yusef Awad ABUSAL51-66
-
EXPLORING THE ACCURACY AND RELIABILITY OF MACHINE LEARNING APPROACHES FOR STUDENT PERFORMANCE
Bilal OWAIDAT67-84
-
REFRIGERANT CHARGING UNIT FOR THE RESIDENTIAL AIR CONDITIONERS: AN EXPERIMENT
Hong Son Le NGUYEN, Minh Ha NGUYEN, Luan Nguyen THANH85-95
-
CHATGPT IN COMMUNICATION: A SYSTEMATIC LITERATURE REVIEW
Muhammad Hasyimsyah BATUBARA, Awal Kurnia Putra NASUTION , NURMALINA, Fachrur RIZHA96-115
-
AERODYNAMIC AND ROLLING RESISTANCES OF HEAVY DUTY VEHICLE. SIMULATION OF ENERGY CONSUMPTION
Łukasz GRABOWSKI, Arkadiusz DROZD, Mateusz KARABELA, Wojciech KARPIUK116-131
-
DEVELOPING MACHINE LEARNING APPLICATION FOR EARLY CARDIOVASCULAR DISEASE (CVD) RISK DETECTION IN FIJI: A DESIGN SCIENCE APPROACH
Shahil SHARMA, Rajnesh LAL, Bimal KUMAR132-152
-
THE POTENTIAL OF ARTIFICIAL INTELLIGENCE IN HUMAN RESOURCE MANAGEMENT
Loubna BOUHSAIEN, Abdellah AZMANI153-170
-
A QUALITATIVE AND QUANTITATIVE APPROACH USING MACHINE LEARNING AND NON-MOTOR SYMPTOMS FOR PARKINSON’S DISEASE CLASSIFICATION. A HIERARCHICAL STUDY
Anitha Rani PALAKAYALA, Kuppusamy P171-191
-
SIMULATION OF TORQUE VARIATIONS IN A DIESEL ENGINE FOR LIGHT HELICOPTERS USING PI CONTROL ALGORITHMS
Paweł MAGRYTA, Grzegorz BARAŃSKI192-201
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
CVD (cardiovascular disease) has become a significant contributor to premature deaths for many years in Fiji. CVD's late detection also significantly impacts annual deaths and casualties. Currently, Fiji lacks diagnosis tools that would enable people to know their risk levels. In this paper, a machine learning mobile application was developed that can be easily accessible to the local population for early prediction of CVD risk. The design science approach was used to guide the development of the application. The design process involved identifying the problem and motivation, setting objectives, creating a machine-learning mobile application for medical record analysis, demonstrating the application to selected participants, evaluating its usability and the machine-learning model's performance, and communicating the findings. The results revealed that the application proposed in this paper is an effective tool for CVD prediction in Fiji.
Keywords:
References
Alaiad, A., Alsharo, M., & Alnsour, Y. (2019). The determinants of m-health adoption in developing countries: An empirical investigation. Applied Clinical Informatics, 10(05), 820–840. https://doi.org/10.1055/s-0039-1697906 DOI: https://doi.org/10.1055/s-0039-1697906
Armaou, M., Araviaki, E., & Musikanski, L. (2020). eHealth and mHealth interventions for ethnic minority and historically underserved populations in developed countries: An umbrella review. International Journal of Community Well-Being, 3, 193-221. https://doi.org/10.1007/s42413-019-00055-5 DOI: https://doi.org/10.1007/s42413-019-00055-5
Blattgerste, J., Behrends, J., & Pfeiffer, T. (2022). A web-based analysis toolkit for the system usability scale. 15th International Conference on PErvasive Technologies Related to Assistive Environments (pp. 237-246). Association for Computing Machinery. https://doi.org/10.1145/3529190.3529216 DOI: https://doi.org/10.1145/3529190.3529216
Curigliano, G., Lenihan, D., Fradley, M., Ganatra, S., Barac, A., Blaes, A., Herrmann, J., Porter, C., Lyon, A. R., Lancellotti, P., Patel, A., DeCara, J., Mitchell, J., Harrison, E., Moslehi, J., Witteles, R., Calabro, M. G., Orecchia, R., De Azambuja, E., … Jordan, K. (2020). Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Annals of Oncology, 31(2), 171–190. https://doi.org/10.1016/j.annonc.2019.10.023 DOI: https://doi.org/10.1016/j.annonc.2019.10.023
Dasmen, R. N., Fatoni, F., Wijaya, A., Tujni, B., & Nabila, S. (2021). Pelatihan uji kegunaan website menggunakan system usability scale (SUS). ABSYARA: Jurnal Pengabdian Pada Masyarakat, 2(2), 146-158. https://doi.org/10.29408/ab.v2i2.4031 DOI: https://doi.org/10.29408/ab.v2i2.4031
Del Mar-Raave, J. R., Bahşi, H., Mršić, L., & Hausknecht, K. (2021). A machine learning-based forensic tool for image classification design science approach. Forensic Science International: Digital Investigation, 38, 301265. https://doi.org/10.1016/j.fsidi.2021.301265 DOI: https://doi.org/10.1016/j.fsidi.2021.301265
Gumede, D. M., Taylor, M., & Kvalsvig, J. D. (2023). Causes and consequences of critical healthcare skills shortage in the Southern African development community. Development Southern Africa, 40(6), 1174-1199. https://doi.org/10.1080/0376835X.2023.2203155 DOI: https://doi.org/10.1080/0376835X.2023.2203155
Hevner, A., & Gregor, S. (2022). Envisioning entrepreneurship and digital innovation through a design science research lens: A matrix approach. Information & Management, 59(3), 103350. https://doi.org/10.1016/j.im.2020.103350 DOI: https://doi.org/10.1016/j.im.2020.103350
Hoque, M. R., Rahman, M. S., Nipa, N. J., & Hasan, M. R. (2020). Mobile health interventions in developing countries: A systematic review. Health Informatics Journal, 26(4), 2792-2810. https://doi.org/10.1177/1460458220937102 DOI: https://doi.org/10.1177/1460458220937102
Islam, M. N., Raiyan, K. R., Mitra, S., Mannan, M. R., Tasnim, T., Putul, A. O., & Mandol, A. B. (2023). Predictions: An IoT and machine learning-based system to predict the risk level of cardiovascular diseases. BMC Health Services Research, 23, 171. https://doi.org/10.1186/s12913-023-09104-4 DOI: https://doi.org/10.1186/s12913-023-09104-4
Kaium, M. A., Bao, Y., Alam, M. Z., & Hoque, M. R. (2020). Understanding continuance usage intention of mHealth in a developing country: An empirical investigation. International Journal of Pharmaceutical and Healthcare Marketing, 14(2), 251-272. https://doi.org/10.1108/IJPHM-06-2019-0041 DOI: https://doi.org/10.1108/IJPHM-06-2019-0041
Kosarkar, N., Basuri, P., Karamore, P., Gawali, P., Badole, P., & Jumle, P. (2022). Disease prediction using machine learning. 10th International Conference on Emerging Trends in Engineering and Technology-Signal and Information Processing (ICETET-SIP-22) (pp. 1-4). IEEE. https://doi.org/10.1109/ICETET-SIP-2254415.2022.9791739 DOI: https://doi.org/10.1109/ICETET-SIP-2254415.2022.9791739
Kruse, C., Betancourt, J., Ortiz, S., Valdes Luna, S. M., Bamrah, I. K., & Segovia, N. (2019). Barriers to the use of mobile health in improving health outcomes in developing countries: Systematic review. Journal of Medical Internet Research, 21(10), e13263. https://doi.org/10.2196/13263 DOI: https://doi.org/10.2196/13263
Kumar, B., & Goundar, M. S. (2022). Kid-learn: A mobile language learning application for pre-schoolers. International Journal of Virtual and Personal Learning Environments, 12(1), 1-16. https://doi.org/10.4018/IJVPLE.314950 DOI: https://doi.org/10.4018/IJVPLE.314950
Ma, E.-Y., Kim, H., & Lee, U. (2023). Investigating causality in mobile health data through deep learning models. 2023 IEEE International Conference on Big Data and Smart Computing (BigComp) (pp. 375-377). IEEE. https://doi.org/10.1109/BigComp57234.2023.00089 DOI: https://doi.org/10.1109/BigComp57234.2023.00089
Ministry of health & medical services. (2015). NCDs in Fiji. https://www.health.gov.fj/ncds/ncds-in fiji/#:~:text=ncds%20in%20fiji&text=in%20recent%20decades%2c%20ncd's%20have,and%20those%20numbers%20are%20growing
Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science research methodology for information systems research. Journal of Management Information Systems, 24(3), 45-77. https://doi.org/10.2753/MIS0742-1222240302 DOI: https://doi.org/10.2753/MIS0742-1222240302
Poalelungi, D. G., Musat, C. L., Fulga, A., Neagu, M., Neagu, A. I., Piraianu, A. I., & Fulga, I. (2023). Advancing patient care: How artificial intelligence is transforming healthcare. Journal of Personalized Medicine, 13(8), 1214. https://doi.org/10.3390/jpm13081214 DOI: https://doi.org/10.3390/jpm13081214
Razzaq, A., Travaglia, J., Raynes-Greenow, C., & Alam, N. A. (2024). Understanding Fijian health system challenges in the prevention of mother-to-child transmission of HIV services in the three tertiary hospitals in Fiji. AIDS Care, 36(7), 954-963. https://doi.org/10.1080/09540121.2024.2331215 DOI: https://doi.org/10.1080/09540121.2024.2331215
Sharma, S., Lal, R., & Kumar, B. A. (2023). Machine learning for early detection of cardiovascular disease in Fiji. 2023 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE) (pp. 1-6). IEEE. https://doi.org/10.1109/CSDE59766.2023.10487655 DOI: https://doi.org/10.1109/CSDE59766.2023.10487655
Sumarsono, S., Sakkinah, I. S., Permanasari, A. E., & Pranggono, B. (2023). Development of a mobile health infrastructure for non-communicable diseases using design science research method: A case study. Journal of Ambient Intelligence and Humanized Computing, 14, 12563-12574. https://doi.org/10.1007/s12652-022-04322-w DOI: https://doi.org/10.1007/s12652-022-04322-w
Taylor, R., Lin, S., Linhart, C., & Morrell, S. (2018). Overview of trends in cardiovascular and diabetes risk factors in Fiji. Annals of Human Biology, 45(3), 188-201. 10.1080/03014460.2018.1465122 DOI: https://doi.org/10.1080/03014460.2018.1465122
Thamilarasan, Y., Ikram, R. R. R., Osman, M., Salahuddin, L., Bujeri, W. Y. W., & Kanchymalay, K. (2023). Enhanced system usability scale using the software quality standard approach. Engineering, Technology & Applied Science Research, 13(5), 11779-11784. https://doi.org/10.48084/etasr.5971 DOI: https://doi.org/10.48084/etasr.5971
Tundjungsari, V., Sofro, A. S. M., Yugaswara, H., & Putra, A. T. D. (2018). Development of mobile health application for cardiovascular disease prevention. International Journal of Advanced Computer Science and Applications, 9(11). https://doi.org/10.14569/IJACSA.2018.091175 DOI: https://doi.org/10.14569/IJACSA.2018.091175
Uddin, S., Khan, A., Hossain, M. E., & Moni, M. A. (2019). Comparing different supervised machine learning algorithms for disease prediction. BMC Medical Informatics and Decision Making, 19, 281. https://doi.org/10.1186/s12911-019-1004-8 DOI: https://doi.org/10.1186/s12911-019-1004-8
Wen, Z., & Huang, H. (2022). The potential for artificial intelligence in healthcare. Journal of Commercial Biotechnology, 27(4). https://doi.org/10.5912/jcb1327 DOI: https://doi.org/10.5912/jcb1327
Zulzalil, H., Rahmat, H., Abd Ghani, A. A., & Kamaruddin, A. (2023). Expert review on usefulness of an integrated checklist-based mobile usability evaluation framework. Journal of Computer Science Research, 5(3), 57-73. https://doi.org/10.30564/jcsr.v5i3.5816 DOI: https://doi.org/10.30564/jcsr.v5i3.5816
Article Details
Abstract views: 779
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
