CLASSIFICATION AND PREDICTION OF BENTHIC HABITAT FROM SCIENTIFIC ECHOSOUNDER DATA: APPLICATION OF MACHINE LEARNING ALGORITHMS
Baigo HAMUNA
Cenderawasih University, Faculty of Mathematics and Natural Science (Indonesia)
https://orcid.org/0000-0002-0706-2496
Sri PUJIYATI
sripu@apps.ipb.ac.idIPB University (Indonesia)
https://orcid.org/0000-0003-4049-4589
Jonson Lumban GAOL
IPB University (Indonesia)
https://orcid.org/0000-0001-8908-3161
Totok HESTIRIANOTO
IPB University (Indonesia)
https://orcid.org/0000-0002-1636-4525
Abstract
This study aims to map three main benthic habitats (coral, seagrass, and sand) in Kapota Atoll (Wakatobi, Indonesia) using single-beam echosounder (SBES) Simrad EK15. Eight acoustic parameters are used as classification aThis study aims to map three main benthic habitats (coral, seagrass, and sand) in Kapota Atoll (Wakatobi, Indonesia) using a single-beam echosounder (SBES) Simrad EK15. The acoustic data were processed using Sonar5-Pro software. Eight acoustic parameters were used as input for the classification and prediction of benthic habitats, including depth (D), five acoustic parameters of the first echo (BD, BP, AttSv1, DecSv1, and AttDecSv1), and cumulative energy of the second and third echoes (AttDecSv2 and AttDecSv3). The classification and prediction process of benthic habitats uses two machine learning algorithms, Random Forest (RF) and Support Vector Machine (SVM), in XLSTAT Basic+ software. The study results show that 49 combinations of acoustic parameters produce benthic habitat maps that meet the minimum accuracy standards for benthic habitat mapping (≥60%). Using eight acoustic parameters produces a more accurate benthic habitat map than using only two main SBES parameters (DecSv1 and AttDecSv2 parameters or E1 and E2 in the RoxAnn system indicating the roughness and hardness indices). The RF and SVM algorithms produce benthic habitat maps with the highest accuracy of 79.33% and 78.67%, respectively. Each acoustic parameter has a different importance for the classification of benthic habitats, where the order of importance of each acoustic parameter in the overall classification follows the following order: AttDecSv2 > D > DecSv1 > BD > AttDecSv3 > AttSv1 > AttDecSv1 > BP. Overall, using more acoustic parameters can significantly improve the accuracy of benthic habitat mapsinput, including depth (D), five acoustic parameters of the first echo (BD, BP, AttSv1, DecSv1, and AttDecSv1) and cumulative energy of the second and third echoes (AttDecSv2 and AttDecSv3). The classification and prediction process of benthic habitats uses two machine learning algorithms, namely Random Forest (RF) and Support Vector Machine (SVM). The study results show that using eight acoustic parameters produces a more accurate benthic habitat map than using only two main SBES parameters (as in the RoxAnn system: roughness and hardness indices). The RF and SVM algorithms produce benthic habitat maps with the highest accuracy of 79.33% and 78.67%, respectively. Each acoustic parameter has a different importance for the classification of benthic habitats, where five acoustic parameters have the highest importance for the overall classification, namely AttDecSv2, D, DecSv1, BD, and AttDecSv3.
Supporting Agencies
Keywords:
Acoustic parameters, Single-beam echosounder, Mapping Accuracy, Random Forest, Support Vector MachineReferences
Anderson, J. T., Van Holliday, D., Kloser, R., Reid, D. G., & Simard, Y. (2008). Acoustic seabed classification: current practice and future directions. ICES Journal of Marine Science, 65(6), 1004-1011. https://doi.org/10.1093/icesjms/fsn061
Google Scholar
Balk, H., & Lindem, T. (2015). Sonar4 and Sonar5-Pro post processing systems: operator manual version 6.0.3. University of Oslo. https://www.scribd.com/document/477760502/SonarX-Manual-v603-2014-12-30-pdf
Google Scholar
Bartholomä, A., Capperucci, R. M., Becker, L., Coers, S. I. I., & Battershill, C. N. (2020). Hydrodynamics and hydroacoustic mapping of a benthic seafloor in a coarse grain habitat of the German Bight. Geo-Marine Letters, 40(2), 183-195. https://doi.org/10.1007/s00367-019-00599-7
Google Scholar
Bejarano, S., Mumby, P. J., Hedley, J. D., & Sotheran, I. (2010). Combining optical and acoustic data to enhance the detection of Caribbean forereef habitats. Remote Sensing of Environment, 114(11), 2768-2778. https://doi.org/10.1016/j.rse.2010.06.012
Google Scholar
Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
Google Scholar
Bravo, F., & Grant, J. (2020). Benthic habitat mapping and sediment nutrient fluxes in a shallow coastal environment in Nova Scotia, Canada. Estuarine, Coastal and Shelf Science, 242, 106816. https://doi.org/10.1016/j.ecss.2020.106816
Google Scholar
Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123-140. https://doi.org/10.1007/BF00058655
Google Scholar
Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324
Google Scholar
Brown, C. J., Smith, S. J., Lawton, P., & Anderson, J. T. (2011). Benthic habitat mapping: A review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuarine, Coastal and Shelf Science, 92(3), 502-520. https://doi.org/10.1016/j.ecss.2011.02.007
Google Scholar
Congalton, R. G., & Green, K. (2019). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Third Edition (3rd ed.). CRC Press.
Google Scholar
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273-297. https://doi.org/10.1007/BF00994018
Google Scholar
Diesing, M., Green, S. L., Stephens, D., Lark, R. M., Stewart, H. A., & Dove, D. (2014). Mapping seabed sediments: Comparison of manual, geostatistical, object-based image analysis and machine learning approaches. Continental Shelf Research, 84, 107-119. https://doi.org/10.1016/j.csr.2014.05.004
Google Scholar
Fajaryanti, R., & Kang, M. (2019). A preliminary study on seabed classification using a scientific echosounder. Journal of the Korean Society of Fisheries Technology, 55, 39-49. https://doi.org/10.3796/KSFOT.2019.55.1.039
Google Scholar
Freitas, R., Ricardo, F., Pereira, F., Sampaio, L., Carvalho, S., Gaspar, M., Quintino, V., & Rodrigues, A. M. (2011). Benthic habitat mapping: Concerns using a combined approach (acoustic, sediment and biological data). Estuarine, Coastal and Shelf Science, 92(4), 598-606. https://doi.org/10.1016/j.ecss.2011.02.022
Google Scholar
Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random Forests for land cover classification. Pattern Recognition Letters, 27(4), 294-300. https:/doi.org/10.1016/j.patrec.2005.08.011
Google Scholar
Goff, J. A., Kraft, B. J., Mayer, L. A., Schock, S. G., Sommerfield, C. K., Olson, H. C., Gulick, S. P. S., & Nordfjord, S. (2004). Seabed characterization on the New Jersey middle and outer shelf: correlatability and spatial variability of seafloor sediment properties. Marine Geology, 209(1-4), 147-172. https://doi.org/10.1016/j.margeo.2004.05.030
Google Scholar
Green, E. P., Mumby, P. J., Edwards, A. J., & Clark, C. D. (2000). Remote sensing: handbook for tropical coastal management. UNESCO Pub.
Google Scholar
Gumusay, M., Bakırman, T., Tüney Kızılkaya, I., & Aykut, N. (2018). A review of seagrass detection, mapping and monitoring applications using acoustic systems. European Journal of Remote Sensing, 52(1), 1-29. https://doi.org/10.1080/22797254.2018.1544838
Google Scholar
Hamilton, L. (2001). Acoustic Seabed Classification Systems. DSTO Aeronautical and Maritime Research Laboratory.
Google Scholar
Hamouda, A., Soliman, K., El-Gharabawy, S., & Nassar, M. (2019). Comparative study between acoustic signals and images for detecting seabed features. Egyptian Journal of Aquatic Research, 45(2), 145-151. https:/doi.org/10.1016/j.ejar.2019.03.002
Google Scholar
Hamuna, B., Dimara, L., Pujiyati, S., & Natih, N. (2018). Correlation of substrate fraction percentage with acoustic backscattering strength from single beam echosounder detection. AACL Bioflux, 11, 1343-1351.
Google Scholar
Hamuna, B., Pujiyati, S., Gaol, J., & Hestirianoto, T. (2023). Spatial distribution of benthic habitats in Kapota Atoll (Wakatobi National Park, Indonesia) using remote sensing imagery. Biodiversitas Journal of Biological Diversity, 24(7). https://doi.org/10.13057/biodiv/d240706
Google Scholar
Hasan, R. C., Ierodiaconou, D., & Monk, J. (2012). Evaluation of four supervised learning methods for benthic habitat mapping using backscatter from multi-beam sonar. Remote Sensing, 4(11), 3427-3443. https://www.mdpi.com/2072-4292/4/11/3427
Google Scholar
Henriques, V., Guerra, M. T., Mendes, B., Gaudêncio, M. J., & Fonseca, P. (2015). Benthic habitat mapping in a Portuguese Marine Protected Area using EUNIS: An integrated approach. Journal of Sea Research, 100, 77-90. https://doi.org/10.1016/j.seares.2014.10.007
Google Scholar
Hilgert, S., Kiemle, L., Fuchs, S., & Wagner, A. (2016). Investigation of echo sounding parameters for the characterisation of bottom sediments in a sub-tropical reservoir. Advances in Oceanography and Limnology, 7(1). https://doi.org/10.4081/aiol.2016.5623
Google Scholar
Huang, Z., Siwabessy, P. J., Heqin, C., & Nichol, S. (2018). Using multibeam backscatter data to investigate sediment-acoustic relationships. Journal of Geophysical Research: Oceans, 123(7), 4649-4665. https://doi.org/10.1029/2017JC013638
Google Scholar
Lee, W. S., & Lin, C. Y. (2018). Mapping of tropical marine benthic habitat: Hydroacoustic classification of coral reefs environment using single-beam (RoxAnn™) system. Continental Shelf Research, 170, 1-10. https://doi.org/10.1016/j.csr.2018.09.012
Google Scholar
Lumivero. (2023). XLSTAT statistical and data analysis solution. https://www.xlstat.com/en
Google Scholar
Manik, H., Mamun, A., & Hestirianoto, T. (2014). Computation of single beam echo sounder signal for underwater objects detection and quantification. International Journal of Advanced Computer Science and Applications, 5(5). https://doi.org/10.14569/IJACSA.2014.050514
Google Scholar
McIntyre, K., McLaren, K., & Prospere, K. (2018). Mapping shallow nearshore benthic features in a Caribbean marine-protected area: assessing the efficacy of using different data types (hydroacoustic versus satellite images) and classification techniques. International Journal of Remote Sensing, 39(4), 1117-1150. https://doi.org/10.1080/01431161.2017.1395924
Google Scholar
McLaren, K., McIntyre, K., & Prospere, K. (2019). Using the random forest algorithm to integrate hydroacoustic data with satellite images to improve the mapping of shallow nearshore benthic features in a marine protected area in Jamaica. GIScience & Remote Sensing, 56(7), 1065-1092. https://doi.org/10.1080/15481603.2019.1613803
Google Scholar
Misiuk, B., & Brown, C. J. (2024). Benthic habitat mapping: A review of three decades of mapping biological patterns on the seafloor. Estuarine, Coastal and Shelf Science, 296, 108599. https://doi.org/10.1016/j.ecss.2023.108599
Google Scholar
Moszynski, M., & Hedgepeth, J. B. (2000). Using single-beam side-lobe observations of fish echoes for fish target strength and abundance estimation in shallow water. Aquatic Living Resources, 13(5), 379-383. https://doi.org/https://doi.org/10.1016/S0990-7440(00)01087-1
Google Scholar
Nemani, S., Cote, D., Misiuk, B., Edinger, E., Mackin-McLaughlin, J., Templeton, A., Shaw, J., & Robert, K. (2022). A multi-scale feature selection approach for predicting benthic assemblages. Estuarine, Coastal and Shelf Science, 277, 108053. https:/doi.org/10.1016/j.ecss.2022.108053
Google Scholar
Nguyen, T., Liquet, B., Mengersen, K., & Sous, D. (2021). Mapping of coral reefs with multispectral satellites: A review of recent papers. Remote Sensing, 13(21), 4470. https://doi.org/10.3390/rs13214470
Google Scholar
Penrose, J., Siwabessy, P. J., Gavrilov, A., Parnum, I., Hamilton, L., Bickers, A., Brooke, B., Ryan, D., & Kennedy, P. (2006). Acoustic Techniques for Seabed Classification. CRC for Coastal Zone, Estuary & Waterway Management.
Google Scholar
Pijanowski, B., & Brown, C. (2022). Grand challenges in acoustic remote sensing: Discoveries to support a better understanding of our changing planet. Frontiers in Remote Sensing, 2. https://doi.org/10.3389/frsen.2021.824848
Google Scholar
Poulain, T., Argillier, C., Gevrey, M., & Guillard, J. (2011). Identifying lakebed nature: Is it feasible with a combination of echosounder and Sonar5-pro? Advances in Oceanography and Limnology, 2(1), 49-53. https://doi.org/10.1080/19475721.2011.565803
Google Scholar
Pujiyati, S., Hamuna, B., Rohilah, Hisyam, M., Srimariana, E. S., & Natih, I. N. M. (2022). Distributions of environmental parameters and Plankton’s volume backscattering strength at Yos Sudarso Bay, Jayapura, Indonesia. Egyptian Journal of Aquatic Research, 48(1), 37-44. https://doi.org/https://doi.org/10.1016/j.ejar.2021.08.001
Google Scholar
Reshitnyk, L., Costa, M., Robinson, C., & Dearden, P. (2014). Evaluation of WorldView-2 and acoustic remote sensing for mapping benthic habitats in temperate coastal Pacific waters. Remote Sensing of Environment, 153, 7-23. https://doi.org/10.1016/j.rse.2014.07.016
Google Scholar
Riegl, B. M., & Purkis, S. J. (2005). Detection of shallow subtidal corals from IKONOS satellite and QTC View (50, 200 kHz) single-beam sonar data (Arabian Gulf; Dubai, UAE). Remote Sensing of Environment, 95(1), 96-114. https://doi.org/10.1016/j.rse.2004.11.016
Google Scholar
Sánchez-Carnero, N., Rodríguez-Pérez, D., Llorens, S., Orenes-Salazar, V., Ortolano, A., & García-Charton, J. A. (2023). An expeditious low-cost method for the acoustic characterization of seabeds in a Mediterranean coastal protected area. Estuarine, Coastal and Shelf Science, 281, 108204. https://doi.org/10.1016/j.ecss.2022.108204
Google Scholar
Shao, H., Kiyomoto, S., Kawauchi, Y., Kadota, T., Nakagawa, M., Yoshimura, T., Yamada, H., Acker, T., & Moore, B. (2021). Classification of various algae canopy, algae turf, and barren seafloor types using a scientific echosounder and machine learning analysis. Estuarine, Coastal and Shelf Science, 255, 107362. https://doi.org/10.1016/j.ecss.2021.107362
Google Scholar
Sklar, E., Bushuev, E., Misiuk, B., Morissette, G., & Brown, C. (2024). Seafloor morphology and substrate mapping in the Gulf of St Lawrence, Canada, using machine learning approaches. Frontiers in Marine Science, 11. https://doi.org/10.3389/fmars.2024.1306396
Google Scholar
Solikin, S., Manik, H., Pujiyati, S., & Susilohadi, S. (2018). Measurement of bottom backscattering strength using single-beam echosounder. Journal of Physics: Conference Series, 1075, 012036. https://doi.org/10.1088/1742-6596/1075/1/012036
Google Scholar
Stephens, D., & Diesing, M. (2014). A comparison of supervised classification methods for the prediction of substrate type using multibeam acoustic and legacy grain-size data. PLOS ONE, 9(4), e93950. https://doi.org/10.1371/journal.pone.0093950
Google Scholar
Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10(5), 988-999. https://doi.org/10.1109/72.788640
Google Scholar
Vassallo, P., Bianchi, C. N., Paoli, C., Holon, F., Navone, A., Bavestrello, G., Cattaneo Vietti, R., & Morri, C. (2018). A predictive approach to benthic marine habitat mapping: Efficacy and management implications. Marine Pollution Bulletin, 131(Part A), 218-232. https://doi.org/10.1016/j.marpolbul.2018.04.016
Google Scholar
Wadoux, A. M. J. C., Heuvelink, G. B. M., de Bruin, S., & Brus, D. J. (2021). Spatial cross-validation is not the right way to evaluate map accuracy. Ecological Modelling, 457, 109692. https://doi.org/10.1016/j.ecolmodel.2021.109692
Google Scholar
Wölfl, A.-C., Snaith, H., Amirebrahimi, S., Devey, C. W., Dorschel, B., Ferrini, V., Huvenne, V. A. I., Jakobsson, M., Jencks, J., Johnston, G., Lamarche, G., Mayer, L., Millar, D., Pedersen, T. H., Picard, K., Reitz, A., Schmitt, T., Visbeck, M., Weatherall, P., & Wigley, R. (2019). Seafloor mapping – The challenge of a truly global ocean bathymetry. Frontiers in Marine Science, 6. https://doi.org/10.3389/fmars.2019.00283
Google Scholar
Authors
Baigo HAMUNACenderawasih University, Faculty of Mathematics and Natural Science Indonesia
https://orcid.org/0000-0002-0706-2496
Authors
Sri PUJIYATIsripu@apps.ipb.ac.id
IPB University Indonesia
https://orcid.org/0000-0003-4049-4589
Statistics
Abstract views: 74PDF downloads: 31
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Similar Articles
- Hakan AYDIN, Ahmet SERTBAŞ, CYBER SECURITY IN INDUSTRIAL CONTROL SYSTEMS (ICS): A SURVEY OF ROWHAMMER VULNERABILITY , Applied Computer Science: Vol. 18 No. 2 (2022)
- Tytus TULWIN, MODELLING OF A LARGE ROTARY HEAT EXCHANGER , Applied Computer Science: Vol. 13 No. 1 (2017)
- Paweł MAGRYTA, AERODYNAMIC RESEARCH OF THE OVERPRESSURE DEVICE FOR INDIVIDUAL TRANSPORT , Applied Computer Science: Vol. 13 No. 1 (2017)
- Stanisław BŁAWUCKI, Kazimierz ZALESKI, CONSTRUCTION AND TECHNOLOGICAL ANALYSIS OF THE BROACH BLADE SHAPE USING THE FINITE ELEMENT METHOD , Applied Computer Science: Vol. 13 No. 1 (2017)
- Marian JANCZAREK, Oleksij BULYANDRA, COMPUTER AIDED THERMAL PROCESSES IN TECHNICAL SPACES , Applied Computer Science: Vol. 13 No. 2 (2017)
- Maria TOMASIKOVA, Frantisek BRUMERČÍK, Aleksander NIEOCZYM, DESIGN AND DYNAMICS MODELING FOR ELECTRIC VEHICLE , Applied Computer Science: Vol. 13 No. 3 (2017)
- Małgorzata ŚLIWA, Ewelina KOSICKA, A MODEL OF KNOWLEDGE ACQUISITION IN THE MAINTENANCE DEPARTMENT OF A PRODUCTION COMPANY , Applied Computer Science: Vol. 13 No. 3 (2017)
- Anusha NALLAPAREDDY, DETECTION AND CLASSIFICATION OF VEGETATION AREAS FROM RED AND NEAR INFRARED BANDS OF LANDSAT-8 OPTICAL SATELLITE IMAGE , Applied Computer Science: Vol. 18 No. 1 (2022)
- Muayed S AL-HUSEINY, Ahmed S SAJIT, BREAST CANCER CAD SYSTEM BY USING TRANSFER LEARNING AND ENHANCED ROI , Applied Computer Science: Vol. 18 No. 1 (2022)
- Erizal ERIZAL, Mohammad DIQI, PERFORMANCE EVALUATION OF STOCK PREDICTION MODELS USING EMAGRU , Applied Computer Science: Vol. 19 No. 3 (2023)
You may also start an advanced similarity search for this article.