SIMULATION OF TORQUE VARIATIONS IN A DIESEL ENGINE FOR LIGHT HELICOPTERS USING PI CONTROL ALGORITHMS
Article Sidebar
Open full text
Issue Vol. 20 No. 3 (2024)
-
VIOLENCE PREDICTION IN SURVEILLANCE VIDEOS
Esraa Alaa MAHAREEK, Doaa Rizk FATHY, Eman Karm ELSAYED, Nahed ELDESOUKY, Kamal Abdelraouf ELDAHSHAN1-16
-
GAP FILLING ALGORITHM FOR MOTION CAPTURE DATA TO CREATE REALISTIC VEHICLE ANIMATION
Weronika WACH, Kinga CHWALEBA17-33
-
SEMANTIC SEGMENTATION OF ALGAL BLOOMS ON THE OCEAN SURFACE USING SENTINEL 3 CHL_NN BAND IMAGERY
Venkatesh BHANDAGE, Manohara PAI M. M.34-50
-
ADVANCED FRAUD DETECTION IN CARD-BASED FINANCIAL SYSTEMS USING A BIDIRECTIONAL LSTM-GRU ENSEMBLE MODEL
Toufik GHRIB, Yacine KHALDI, Purnendu Shekhar PANDEY, Yusef Awad ABUSAL51-66
-
EXPLORING THE ACCURACY AND RELIABILITY OF MACHINE LEARNING APPROACHES FOR STUDENT PERFORMANCE
Bilal OWAIDAT67-84
-
REFRIGERANT CHARGING UNIT FOR THE RESIDENTIAL AIR CONDITIONERS: AN EXPERIMENT
Hong Son Le NGUYEN, Minh Ha NGUYEN, Luan Nguyen THANH85-95
-
CHATGPT IN COMMUNICATION: A SYSTEMATIC LITERATURE REVIEW
Muhammad Hasyimsyah BATUBARA, Awal Kurnia Putra NASUTION , NURMALINA, Fachrur RIZHA96-115
-
AERODYNAMIC AND ROLLING RESISTANCES OF HEAVY DUTY VEHICLE. SIMULATION OF ENERGY CONSUMPTION
Łukasz GRABOWSKI, Arkadiusz DROZD, Mateusz KARABELA, Wojciech KARPIUK116-131
-
DEVELOPING MACHINE LEARNING APPLICATION FOR EARLY CARDIOVASCULAR DISEASE (CVD) RISK DETECTION IN FIJI: A DESIGN SCIENCE APPROACH
Shahil SHARMA, Rajnesh LAL, Bimal KUMAR132-152
-
THE POTENTIAL OF ARTIFICIAL INTELLIGENCE IN HUMAN RESOURCE MANAGEMENT
Loubna BOUHSAIEN, Abdellah AZMANI153-170
-
A QUALITATIVE AND QUANTITATIVE APPROACH USING MACHINE LEARNING AND NON-MOTOR SYMPTOMS FOR PARKINSON’S DISEASE CLASSIFICATION. A HIERARCHICAL STUDY
Anitha Rani PALAKAYALA, Kuppusamy P171-191
-
SIMULATION OF TORQUE VARIATIONS IN A DIESEL ENGINE FOR LIGHT HELICOPTERS USING PI CONTROL ALGORITHMS
Paweł MAGRYTA, Grzegorz BARAŃSKI192-201
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
This article presents the results of simulation research of a diesel engine for a light helicopter. The simulations were performed using the 1D software AVL Boost RT. The engine model includes elements such as cylinders, turbine, compressor, inlet and outlet valves, ambient environment definition, and fuel injection control strategy. The simulations aimed to evaluate the engine's response to step changes in the main rotor load, both increasing and decreasing power demands. Parameters analyzed included power deviation, torque, engine rotational speed, and stabilization time of the main rotor rotational speed. All tests were conducted using a single set of PI controller settings. The results demonstrate that these parameters are dependent on the magnitude of the step change in the main rotor load demand. The study compares the maximum engine rotational speed deviation from the nominal value for both increasing and decreasing main rotor load demands. The findings indicate that using PI regulator to control rotational speed in the diesel engine in a light helicopter significantly depends on the change in the load torque on the rotor.
Keywords:
References
Ang, K. H., Chong, G., & Li, Y. (2005). PID control system analysis and design. IEEE Transactions on Control Systems Technology, 13(4). 559-576. https://doi.org/10.1109/TCST.2005.847331 DOI: https://doi.org/10.1109/TCST.2005.847331
Åström, K. J., & Murray, R. M. (2008). Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press. DOI: https://doi.org/10.1515/9781400828739
Banaszuk, A., Ariyur, K. B., Krstić, M., & Jacobson, C. A. (2004). An adaptive algorithm for control of combustion instability. Automatica, 40(11), 1965-1972. https://doi.org/10.1016/j.automatica.2004.06.008 DOI: https://doi.org/10.1016/j.automatica.2004.06.008
Beller, G., Árpád, I., Kiss, J. T., & Kocsis, D. (2021). AVL Boost: a powerful tool for research and education. Journal of Physics Conference Series, 1935, 012015. https://doi.org/10.1088/1742-6596/1935/1/012015 DOI: https://doi.org/10.1088/1742-6596/1935/1/012015
Czyż, Z., Jakubczak, P., Podolak, P., Skiba, K., Karpiński, P., Droździel-Jurkiewicz, M., & Wendeker, M. (2023). Deformation measurement system for UAV components to improve their safe operation. Eksploatacja i Niezawodność – Maintenance and Reliability, 25(4), 172358. https://doi.org/10.17531/ein/172358 DOI: https://doi.org/10.17531/ein/172358
Czyż, Z., Łusiak, T., Czyż , D., & Kasperek, D. (2016). Analysis of the pre-rotation engine loads in the autogyro. Advances in Science and Technology. Research Journal, 10(31), 169-176. https://doi.org/10.12913/22998624/64015 DOI: https://doi.org/10.12913/22998624/64015
Dudnika, V., & Gaponova, V. (2022). Correction system of the main rotor angular speed for helicopters of little weight categories. Transportation Research Procedia, 63, 187-194. https://doi.org/10.1016/j.trpro.2022.06.004 DOI: https://doi.org/10.1016/j.trpro.2022.06.004
Heywood, J. B. (1988). Internal Combustion Engine Fundamentals. McGraw-Hill.
Hlinka, J., Kostial, R., & Horpatzka M. (2021). Application of enhanced methods for safety assessment of FADEC. Maintenance and Reliability, 23(1), 63-73. https://doi.org/10.17531/ein.2021.1.7 DOI: https://doi.org/10.17531/ein.2021.1.7
Łusiak, T., & Grudzień, A. (2013). Rotor turbulence influence on helicopter flights in high urban built-up area. Advances in Science and Technology Research Journal, 7(17), 47-50. https://doi.org/10.5604/20804075.1036997 DOI: https://doi.org/10.5604/20804075.1036997
Magryta, P. (2021). 1D modelling and PID control of helicopter diesel engine rotational speed in torque changes. Journal of Physics: Conference Series, 2130, 012007. https://10.1088/1742-6596/2130/1/012007 DOI: https://doi.org/10.1088/1742-6596/2130/1/012007
Magryta, P., & Majczak, A. (2012). Diesel engine applicability in a light helicopter. Autobusy: technika, eksploatacja, systemy transportowe, 13(4), 98-103.
Mueller, T. J. (2002). Introduction to the design of fixed-wing micro air vehicles: Including three case studies. AIAA Education Series.
Niederliński, A., Mościński, J., & Ogonowski, Z. (1995). Regulacja adaptacyjna. Wydawnictwo Naukowe PWN.
Omran, I., Mostafa, A., Seddik, A., Ali, M., Hussein, M., Ahmed, Y., Aly, Y., & Abdelwahab, M. (2024). Deep reinforcement learning implementation on IC engine idle speed control. Ain Shams Engineering Journal, 15(5): 102670. https://doi.org/10.1016/j.asej.2024.102670 DOI: https://doi.org/10.1016/j.asej.2024.102670
Pietrykowski, K., Magryta, P., Wendeker, M., & Czyż, Z. (2014). Simulation studies of the helicopter diesel engine exploitation. Logistyka, 2014(3), 5111-5117.
Przystupa, K. (2018). Tuning of PID controllers - Approximate methods. Advances in Science and Technology Research Journal, 12(4), 56-64. https://doi.org/10.12913/22998624/99987 DOI: https://doi.org/10.12913/22998624/99987
Stone, R. (1992). Introduction to Internal Combustion Engines. Palgrave Macmillan. DOI: https://doi.org/10.1007/978-1-349-22147-9
Wang, Y., Pan, M., Zhou, W., & Huang, J. (2023a). Direct thrust control for variable cycle engine based on fractional order PID-nonlinear model predictive control under off-nominal operation conditions. Aerospace Science and Technology, 143, 108726. https://doi.org/10.1016/j.ast.2023.108726 DOI: https://doi.org/10.1016/j.ast.2023.108726
Wang, Z., Du, J., & Guo, H. (2023b) A study on optimal rotor speed control method for helicopter power system considering the influence of infrared suppressors. International Journal of Turbo & Jet-Engines, 41(3), 519-528. https://doi.org/10.1515/tjj-2023-0048 DOI: https://doi.org/10.1515/tjj-2023-0048
Wendeker, M., Siadkowska, K., Magryta, P., Czyż, Z., & Skiba, K. (2014). Optimal diesel engine technology analysis matching the platform of the helicopter. World Academy of Science, Engineering and Technology International Journal of Mechanical, Industrial Science and Engineering, 8(5). https://doi.org/10.5281/zenodo.1092291
Zang, H., Changkai, Y., & Guoqiang, C. (2013). Variable rotor speed control for an integrated helicopter/engine system. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 228(3), 323-341. https://doi.org/10.1177/0954410013485010 DOI: https://doi.org/10.1177/0954410013485010
Article Details
Abstract views: 420
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
