SIMULATION OF TORQUE VARIATIONS IN A DIESEL ENGINE FOR LIGHT HELICOPTERS USING PI CONTROL ALGORITHMS

Paweł MAGRYTA

p.magryta@pollub.pl
Lublin University of Technology (Poland)
https://orcid.org/0000-0002-9654-2909

Grzegorz BARAŃSKI


Lublin University of Technology (Poland)
https://orcid.org/0000-0003-2596-3148

Abstract

This article presents the results of simulation research of a diesel engine for a light helicopter. The simulations were performed using the 1D software AVL Boost RT. The engine model includes elements such as cylinders, turbine, compressor, inlet and outlet valves, ambient environment definition, and fuel injection control strategy. The simulations aimed to evaluate the engine's response to step changes in the main rotor load, both increasing and decreasing power demands. Parameters analyzed included power deviation, torque, engine rotational speed, and stabilization time of the main rotor rotational speed. All tests were conducted using a single set of PI controller settings. The results demonstrate that these parameters are dependent on the magnitude of the step change in the main rotor load demand. The study compares the maximum engine rotational speed deviation from the nominal value for both increasing and decreasing main rotor load demands. The findings indicate that using PI regulator to control rotational speed in the diesel engine in a light helicopter significantly depends on the change in the load torque on the rotor.


Keywords:

Diesel engine, PI control, algorithm, speed regulation, helicopter propulsion

Ang, K. H., Chong, G., & Li, Y. (2005). PID control system analysis and design. IEEE Transactions on Control Systems Technology, 13(4). 559-576. https://doi.org/10.1109/TCST.2005.847331
  Google Scholar

Åström, K. J., & Murray, R. M. (2008). Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press.
  Google Scholar

Banaszuk, A., Ariyur, K. B., Krstić, M., & Jacobson, C. A. (2004). An adaptive algorithm for control of combustion instability. Automatica, 40(11), 1965-1972. https://doi.org/10.1016/j.automatica.2004.06.008
  Google Scholar

Beller, G., Árpád, I., Kiss, J. T., & Kocsis, D. (2021). AVL Boost: a powerful tool for research and education. Journal of Physics Conference Series, 1935, 012015. https://doi.org/10.1088/1742-6596/1935/1/012015
  Google Scholar

Czyż, Z., Jakubczak, P., Podolak, P., Skiba, K., Karpiński, P., Droździel-Jurkiewicz, M., & Wendeker, M. (2023). Deformation measurement system for UAV components to improve their safe operation. Eksploatacja i Niezawodność – Maintenance and Reliability, 25(4), 172358. https://doi.org/10.17531/ein/172358
  Google Scholar

Czyż, Z., Łusiak, T., Czyż , D., & Kasperek, D. (2016). Analysis of the pre-rotation engine loads in the autogyro. Advances in Science and Technology. Research Journal, 10(31), 169-176. https://doi.org/10.12913/22998624/64015
  Google Scholar

Dudnika, V., & Gaponova, V. (2022). Correction system of the main rotor angular speed for helicopters of little weight categories. Transportation Research Procedia, 63, 187-194. https://doi.org/10.1016/j.trpro.2022.06.004
  Google Scholar

Heywood, J. B. (1988). Internal Combustion Engine Fundamentals. McGraw-Hill.
  Google Scholar

Hlinka, J., Kostial, R., & Horpatzka M. (2021). Application of enhanced methods for safety assessment of FADEC. Maintenance and Reliability, 23(1), 63-73. https://doi.org/10.17531/ein.2021.1.7
  Google Scholar

Łusiak, T., & Grudzień, A. (2013). Rotor turbulence influence on helicopter flights in high urban built-up area. Advances in Science and Technology Research Journal, 7(17), 47-50. https://doi.org/10.5604/20804075.1036997
  Google Scholar

Magryta, P. (2021). 1D modelling and PID control of helicopter diesel engine rotational speed in torque changes. Journal of Physics: Conference Series, 2130, 012007. https://10.1088/1742-6596/2130/1/012007
  Google Scholar

Magryta, P., & Majczak, A. (2012). Diesel engine applicability in a light helicopter. Autobusy: technika, eksploatacja, systemy transportowe, 13(4), 98-103.
  Google Scholar

Mueller, T. J. (2002). Introduction to the design of fixed-wing micro air vehicles: Including three case studies. AIAA Education Series.
  Google Scholar

Niederliński, A., Mościński, J., & Ogonowski, Z. (1995). Regulacja adaptacyjna. Wydawnictwo Naukowe PWN.
  Google Scholar

Omran, I., Mostafa, A., Seddik, A., Ali, M., Hussein, M., Ahmed, Y., Aly, Y., & Abdelwahab, M. (2024). Deep reinforcement learning implementation on IC engine idle speed control. Ain Shams Engineering Journal, 15(5): 102670. https://doi.org/10.1016/j.asej.2024.102670
  Google Scholar

Pietrykowski, K., Magryta, P., Wendeker, M., & Czyż, Z. (2014). Simulation studies of the helicopter diesel engine exploitation. Logistyka, 2014(3), 5111-5117.
  Google Scholar

Przystupa, K. (2018). Tuning of PID controllers - Approximate methods. Advances in Science and Technology Research Journal, 12(4), 56-64. https://doi.org/10.12913/22998624/99987
  Google Scholar

Stone, R. (1992). Introduction to Internal Combustion Engines. Palgrave Macmillan.
  Google Scholar

Wang, Y., Pan, M., Zhou, W., & Huang, J. (2023a). Direct thrust control for variable cycle engine based on fractional order PID-nonlinear model predictive control under off-nominal operation conditions. Aerospace Science and Technology, 143, 108726. https://doi.org/10.1016/j.ast.2023.108726
  Google Scholar

Wang, Z., Du, J., & Guo, H. (2023b) A study on optimal rotor speed control method for helicopter power system considering the influence of infrared suppressors. International Journal of Turbo & Jet-Engines, 41(3), 519-528. https://doi.org/10.1515/tjj-2023-0048
  Google Scholar

Wendeker, M., Siadkowska, K., Magryta, P., Czyż, Z., & Skiba, K. (2014). Optimal diesel engine technology analysis matching the platform of the helicopter. World Academy of Science, Engineering and Technology International Journal of Mechanical, Industrial Science and Engineering, 8(5). https://doi.org/10.5281/zenodo.1092291
  Google Scholar

Zang, H., Changkai, Y., & Guoqiang, C. (2013). Variable rotor speed control for an integrated helicopter/engine system. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 228(3), 323-341. https://doi.org/10.1177/0954410013485010
  Google Scholar

Download


Published
2024-09-30

Cited by

MAGRYTA, P., & BARAŃSKI, G. (2024). SIMULATION OF TORQUE VARIATIONS IN A DIESEL ENGINE FOR LIGHT HELICOPTERS USING PI CONTROL ALGORITHMS. Applied Computer Science, 20(3), 192–201. https://doi.org/10.35784/acs-2024-36

Authors

Paweł MAGRYTA 
p.magryta@pollub.pl
Lublin University of Technology Poland
https://orcid.org/0000-0002-9654-2909

Authors

Grzegorz BARAŃSKI 

Lublin University of Technology Poland
https://orcid.org/0000-0003-2596-3148

Statistics

Abstract views: 197
PDF downloads: 55


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

<< < 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.