Performance of compressed earth blocks reinforced with natural fibers
Article Sidebar
Open full text
Main Article Content
DOI
Authors
Abstract
In contemporary times, governments prioritise the construction of structures that are both durable and cost-effective. Compressed earth blocks (CEB), known for their low environmental impact, excellent thermal insulation, and water resistance, have consistently met these criteria while seamlessly blending modernity with tradition. This study aims to investigate the mechanical and thermal properties of CEB stabilised with cement, compressed at 3 MPa, and reinforced with fibres derived from alfa and vine shoots. The fibres underwent chemical treatment, employing an alkali-acrylic process, to enhance their bond with the matrix, thereby bolstering the mechanical strength of the CEB. Results indicate a notable reduction in water absorption for treated alfa and vine shoot fibres, with reductions of 45% and 33%, respectively, compared to untreated fibres. Optimal compression resistance was achieved with a composition of 1.5% vine shoot fibres and 2.5% alfa fibres. Moreover, surface treatment of fibres led to a 5% and 20% increase in compressive strength for alfa and vine shoot fibres, respectively. Additionally, employing both fibre types resulted in decreased thermal conductivity and density, albeit with a slight adverse effect on thermal conductivity in CEBs containing treated fibres of both types.
Keywords:
References
[1] Balaras C. A., Gaglia A. G., Georgopoulou E., Mirasgedis S., Sarafidis Y., Lalas D. P., “European residential buildings and empirical assessment of the Hellenic building stock, energy consumption, emissions and potential energy savings”, Building and Environment, vol. 42(3), (2007), 1298–1314. https://doi.org/10.1016/j.buildenv.2005.11.001 DOI: https://doi.org/10.1016/j.buildenv.2005.11.001
[2] Houben H., Guillaud H., “CRATerre: traité de construction en terre”, Éditions Parenthèses: Marseille, France, 2006.
[3] Boussaa N., Kheloui F., Chelouah N., “Mechanical, thermal and durability investigation of compressed earth bricks stabilized with wood biomass ash”, Construction and Building Materials, vol. 364, (2023), 129874. https://doi.org/10.1016/j.conbuildmat.2022.129874 DOI: https://doi.org/10.1016/j.conbuildmat.2022.129874
[4] Kiki G., Nshimiyimana P., Kouchade C., Messan A., Houngan A., Andre P., “Physico–mechanical and durability performances of compressed earth blocks incorporating quackgrass straw: An alternative to fired clay”, Construction and Building Materials, vol. 403, (2023), 133064. https://doi.org/10.1016/j.conbuildmat.2023.133064 DOI: https://doi.org/10.1016/j.conbuildmat.2023.133064
[5] Junior A. C. P., Teixeira E., Mateus R., “Improving the mechanical, thermal and durability properties of compressed earth blocks by incorporating industrial waste and by-products: A systematic literature review”, Construction and Building Materials, vol. 438, (2024), 137063. https://doi.org/10.1016/j.conbuildmat.2024.137063 DOI: https://doi.org/10.1016/j.conbuildmat.2024.137063
[6] Nshimiyimana P., Effect of the type of clay earthen materials and substitution materials on the physico-mechanical properties and durability of compressed earth blocks, PhD thesis, University of Liege, 2020. https://hdl.handle.net/2268/247797
[7] Bouhicha M., Aouissi F., Kemai S., “Performance of composite soil reinforced with barley straw”, Cement and Concrete Composites, vol. 27(5), (2005), 617–621. https://doi.org/10.1016/j.cemconcomp.2004.09.013 DOI: https://doi.org/10.1016/j.cemconcomp.2004.09.013
[8] Alders E., “Flexural testing of compressed earth blocks reinforced with natural fibers,” in Masters Abstracts International, vol. 50(06), (2012).
[9] Chaib H., Kriker A., Mekhermeche A., “Thermal study of earth bricks reinforced by date palm fibers”, Energy Procedia, vol. 74, (2015), 919–925. https://doi.org/10.1016/j.egypro.2015.07.827 DOI: https://doi.org/10.1016/j.egypro.2015.07.827
[10] Taallah B., Guetalla A., Guetalla S., Kriker A., “Mechanical properties and hygroscopicity behavior of compressed earth block filled by date palm fibers”, Construction and Building Materials, vol. 59, (2014), 161–168. https://doi.org/10.1016/j.conbuildmat.2014.02.058 DOI: https://doi.org/10.1016/j.conbuildmat.2014.02.058
[11] Malanda N. Kimbembe P. L., Tamba-Nsemi Y. D., “Etude des caractéristiques mécaniques d’une brique en terre stabilisée à l’aide de la mélasse de canne à sucre,” Sciences Appliquées et de l’Ingénieur, vol. 2(2), (2018), 1–9. http://publication.lecames.org/index.php/ing/article/view/1195
[12] Adadja E. C. and Gibigaye M., “Stabilisation de la terre de barre par des fibres végétales pour son utilisation dans la fabrication des blocs de maçonnerie”, 2016.
[13] Danso H., Martinson D. B., Ali M., Williams J. B., “Physical, mechanical and durability properties of soil building blocks reinforced with natural fibres”, Construction and Building Materials, vol. 101, (2015), 797–809. https://doi.org/10.1016/j.conbuildmat.2015.10.069 DOI: https://doi.org/10.1016/j.conbuildmat.2015.10.069
[14] Mesbah A., Morel A. C., Walker P., Ghavami K., “Development of a direct tensile test for compacted earth blocks reinforced with natural fibers”, Journal of Materials in Civil Engineering, vol. 16(1), (2004), 95–98. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:1(95) DOI: https://doi.org/10.1061/(ASCE)0899-1561(2004)16:1(95)
[15] Izemmourena O., Guettala A., “Amélioration de la durabilité des briques de terre comprimée à base d’un sol de la région de Biskra”, MATEC Web of Conferences, vol. 11, (2014), 02001. https://doi.org/10.1051/matecconf/20141102001 DOI: https://doi.org/10.1051/matecconf/20141102001
[16] N. A. 442: Ciments: composition, spécification et critères de conformité des ciments courants. Algérienne N. A. Norme, Edition, 2013.
[17] EN 197-1. Ciment Partie 1: Composition, spécifications et critères de conformité des ciments courants, CEN, 2001.
[18] P 18-560: Granulats-Analyse granulométrique par tamisage, Association Française de Normalisation, Paris, France, 1990.
[19] P94-057-Sols: reconnaissance et essais-Analyse granulométrique des sols-Méthode par sédimentation, Association Française de Normalisation, Paris, France, 1992.
[20] Izemmouren W., Gadri K, Guetalla A., “Effet des conditions de cure sur les propriétés physiques et mécaniques des blocs de terre comprimée”, in CFM 2013-21ème Congrès Français de Mécanique, 2013.
[21] Millogo Y., Morel J. C., Aubert J. E., Ghavami K., “Experimental analysis of pressed adobe blocks reinforced with Hibiscus cannabinus fibers”, Construction and Building Materials, vol. 52, (2014), 71–78. https://doi.org/10.1016/j.conbuildmat.2013.10.094 DOI: https://doi.org/10.1016/j.conbuildmat.2013.10.094
[22] Jiménez L., Perez A., de la Torre M. J., Moral A., Serrano L., “Characterization of vine shoots, cotton stalks, Leucaena leucocephala and Chamaecytisus proliferus, and of their ethyleneglycol pulps”, Bioresource Technology, vol. 98(18), (2007), 3487–3490. https://doi.org/10.1016/j.biortech.2006.11.009 DOI: https://doi.org/10.1016/j.biortech.2006.11.009
[23] Bouiri B., Amrani M., “Production of dissolving grade pulp from alfa”, BioResources, vol. 5(1), (2010), 291-302. https://bioresources.cnr.ncsu.edu/BioRes_05/BioRes_05_1_0291_Bouiri_Amrani_Prod_Dissolving_Pulp_Alfa_767.pdf DOI: https://doi.org/10.15376/biores.5.1.291-302
[24] Borchani K. E., Développement d’un composite à base d’un polymère biodégradable et de fibres extraites de la plante d’Alfa. Université de Lyon; École nationale d’ingénieurs de Sfax, Tunisie, 2016.
[25] Rokbi M., Osmani H., “L’effet des traitements de surface des fibres sur les propriétés mécaniques de composites Polyester-fibres Alfa”, in CFM 2011-20ème Congrès Français de Mécanique, 2011.
[26] BS:EN:1008:2002. Mixing water for concrete. Specification for sampling, testing and assessing the suitability of water, including water recovered from processes in the concrete industry, as mixing water for concrete, BSI Standards Publication, 2002, p. 22.
[27] Taallah B., Etude du comportement physico-mécanique du bloc de terre comprimée avec fibres, Université Mohamed Khider Biskra, 2014.
[28] Alsaeed T., Yousif B. F., Ku H., “The potential of using date palm fibres as reinforcement for polymeric composites”, Materials & Design, vol. 43, (2013), 177–184. https://doi.org/10.1016/j.matdes.2012.06.061 DOI: https://doi.org/10.1016/j.matdes.2012.06.061
[29] Mwaikambo L. Y., Ansell M. P., “Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization”, Journal of Applied Polymer Science, vol. 84(12), (2002), 2222–2234. https://doi.org/10.1002/app.10460 DOI: https://doi.org/10.1002/app.10460
[30] Dávila I., Gullon P., Andres M. A.,Labidi J., “Coproduction of lignin and glucose from vine shoots by eco-friendly strategies: Toward the development of an integrated biorefinery”, Bioresource technology, vol. 244, (2017), 328–337. https://doi.org/10.1016/j.biortech.2017.07.104 DOI: https://doi.org/10.1016/j.biortech.2017.07.104
[31] El-Abbassi F. E., Ayad R., Iamdouara N., Kebir H., Sabhi H., Buet S., Assarar M., “Elaboration, analyse et modélisation mécanique numérique d’agro-composites à base de fibres courtes d’alfa”, MATEC Web of Conferences, vol. 11, (2014), 1039. https://doi.org/10.1051/matecconf/20141101039 DOI: https://doi.org/10.1051/matecconf/20141101039
[32] Sawsen C., Fouzia K., Mohamed B., Moussa G., “Effect of flax fibers treatments on the rheological and the mechanical behavior of a cement composite”, Construction and Building Materials, vol. 79, (2015), 229–235.https://doi.org/10.1016/j.conbuildmat.2014.12.091 DOI: https://doi.org/10.1016/j.conbuildmat.2014.12.091
[33] Chamoin J., Optimisation des propriétés (physiques, mécaniques et hydriques) de bétons de chanvre par la maîtrise de la formulation. INSA de Rennes, 2013.
[34] Gram H. E., Durability of natural fibres in concrete, CBI forskning, ISSN 0346-6906, 1983. https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-2874
[35] Laibi B., Comportement hygro-thermo-mécanique de matériaux structuraux pour la construction associant des fibres de kénaf à des terres argileuses, Normandie Université; Université d’Abomey-Calavi (Bénin), 2017.
[36] Olivier M., Mesbah A., “Le matériau terre: Essai de compactage statique pour la fabrication de briques de terre compressées”, Bulletin de Liaison des Laboratoires des Ponts et Chaussées, vol. 146, (1986), 37–43.
[37] Guettala A., Houari H., Mezghiche B., Chebili R., Durability of lime stabilized earth blocks, 2002. http://archives.univ-biskra.dz/handle/123456789/385 DOI: https://doi.org/10.1680/scc.31777.0064
[38] Walker P. J., “Strength, durability and shrinkage characteristics of cement stabilised soil blocks”, Cement and Concrete Composites, vol. 17(4), (1995), 301–310.
https://doi.org/10.1016/0958-9465(95)00019-9 DOI: https://doi.org/10.1016/0958-9465(95)00019-9
[39] Bahar R., Benazzoug M., Kenai S., “Performance of compacted cement-stabilised soil”, Cement and Concrete Composites, vol. 26(7), (2004), 811–820. https://doi.org/10.1016/j.cemconcomp.2004.01.003 DOI: https://doi.org/10.1016/j.cemconcomp.2004.01.003
[40] Boulekbache P. B. (ed.), Nature & Technology, vol. 11(2), (2019), 54.
[41] Mango-Itulamya L. A., Le bloc de terre comprimée, 2019. https://hdl.handle.net/2268/237192
[42] P13-901 (2001). Compressed Earth Blocks for Walls and Partitions: Definitions, Specifications, Test Methods, Conditions of Acceptance, Association Française de Normalisation, Saint-Denis La Plaine Cedex. https://doi.org/10.1108/02630801111118403 DOI: https://doi.org/10.1108/02630801111118403
[43] P18-407, 1981. Concretes bending test, French Standards Association AFNOR, 238–240. https://www.ajol.info/index.php/srst/article/view/182112
[44] NF P 18-459. Béton – Essai pour béton durci – Essai de porosité et de masse volumique, AFNOR, 2010.
[45] NF EN 993-15. Ct-mètre: Appareillage pour la mesure de la conductivité et de la chaleur spécifique, AFNOR, 2005.
[46] Ashour T., Korjenic A., Korjenic S., Wu W., “Thermal conductivity of unfired earth bricks reinforced by agricultural wastes with cement and gypsum”, Energy and Buildings, vol. 104, (2015), 139–146. https://doi.org/10.1016/j.enbuild.2015.07.016 DOI: https://doi.org/10.1016/j.enbuild.2015.07.016
[47] Calatan G., Hegyi A., Dico C., Mircea C., “Determining the optimum addition of vegetable materials in adobe bricks”, Procedia Technology, vol. 22, (2016), 259–265. https://doi.org/10.1016/j.protcy.2016.01.077 DOI: https://doi.org/10.1016/j.protcy.2016.01.077
[48] Abessolo D., Biwole A. B., Fokwa D., Ganou Koungang B. M., Nyouma Yebga B., “Effets de la longueur et de la teneur des fibres de bambou sur les propriétés physicomécaniques et hygroscopiques des Blocs de Terre Comprimée (BTC) utilisés dans la construction”, Afrique Science, vol. 16(4), (2020), 13–22.
[49] Khedari J., Watsanasathaporn P., Hirunlabh J., “Development of fibre-based soil–cement block with low thermal conductivity”, Cement and Concrete Composites, vol. 27(1), (2005), 111–116. https://doi.org/10.1016/j.cemconcomp.2004.02.042 DOI: https://doi.org/10.1016/j.cemconcomp.2004.02.042
[50] Ajouguim S., Talibi S., Djelal-Dantec C., Hajjou H., Waqif M., Stefanidou M., Saadi L., “Effect of Alfa fibers on the mechanical and thermal properties of compacted earth bricks”, Materials Today: Proceedings, vol. 37, (2021), 4049–4057. https://doi.org/10.1016/j.matpr.2020.07.539 DOI: https://doi.org/10.1016/j.matpr.2020.07.539
[51] Ouedraogo M., Dao K., Millogo Y., Seynou M., Aubert J. E., Gomina M., “Influence des fibres de kenaf (Hibiscus altissima) sur les propriétés physiques et mécaniques des adobes”, Journal de la Société Ouest-Africaine de Chimie, vol. 43, (2017), 48–63. http://www.soachim.org
[52] Elhamdouni Y., Khabbazi A., Benayad C., Mounir S., Dadi A., “Thermophysical and mechanical characterization of clay bricks reinforced by alfa or straw fibers”, IOP Conference Series: Materials Science and Engineering, 2017, vol. 186(1), 12035.
https://doi.org/10.1088/1757-899X/186/1/012035 DOI: https://doi.org/10.1088/1757-899X/186/1/012035
[53] El-Abbassi F. E., Assarar M., Ayad R., Bourmaud A., Baley C., “A review on alfa fibre (Stipa tenacissima L.): From the plant architecture to the reinforcement of polymer composites”, Composites Part A: Applied Science and Manufacturing, vol. 128, (2020), 105677. https://doi.org/10.1016/j.compositesa.2019.105677 DOI: https://doi.org/10.1016/j.compositesa.2019.105677
[54] Laborel-Préneron A., Aubert J.E., Magniont C., Tribout C., Bertron A., “Plant aggregates and fibers in earth construction materials: A review”, Construction and Building Materials, vol. 111, (2016), 719–734. https://doi.org/10.1016/j.conbuildmat.2016.02.119 DOI: https://doi.org/10.1016/j.conbuildmat.2016.02.119
[55] Segetin M., Jayaraman K., Xu X., “Harakeke reinforcement of soil–cement building materials: manufacturability and properties”, Building and Environment, vol. 42(8), (2007), 3066–3079. https://doi.org/10.1016/j.buildenv.2006.07.033 DOI: https://doi.org/10.1016/j.buildenv.2006.07.033
[56] Ben Mansour M., Jelidi A., Cherif A. S., Jabrallah S. B. “Optimizing thermal and mechanical performance of compressed earth blocks (CEB)”, Construction and Building Materials, vol. 104, (2016), 44–51. https://doi.org/10.1016/j.conbuildmat.2015.12.024 DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.024
[57] Lima J., Faria P., Silva A. S., “Earth plasters: the influence of clay mineralogy in the plasters’ properties”, International Journal of Architectural Heritage, vol. 14(7), (2020), 948–963. https://doi.org/10.1080/15583058.2020.1727064 DOI: https://doi.org/10.1080/15583058.2020.1727064
[58] Meukam P., “Valorisation des briques de terre stabilisées en vue de l’isolation thermique de bâtiments”, Université de Yaoundé I, vol. 5, (2004), 0–10.
[59] Boffoue M. O., Kouadio K. L., Kouakou C. H., Assande A., A., Dauscher A., Lenoir B., Emeruwa E., “Influence de la teneur en ciment sur les propriétés thermomécaniques des blocs d’argile comprimée et stabilisée”, Afrique Science: Revue Internationale des Sciences et Technologie, vol. 11(2), (2015), 35–43.
[60] Poullain P., Leklou N., Laibi A. B., Gomina M.,., “Propriétés des briques de terre compressées réalisées àpartir de matériaux traditionnels du Bénin”, Journal of Composite & Advanced Materials / Revue des Composites et des Matériaux Avancés, vol. 29(4), (2019), 233-241. https://doi.org/10.18280/rcma.290407 DOI: https://doi.org/10.18280/rcma.290407
[61] Namango S. S., Madara D. S., “Compressed earth blocks reinforced with sisal fibres”, Journal of Agricultural Pure Applied Science and Technology, vol. 19, (2014), 10–22.
[62] Lian C., Zhuge Y., Beecham S., “The relationship between porosity and strength for porous concrete”, Construction and Building Materials, vol. 25(11), (2011), 4294–4298. https://doi.org/10.1016/j.conbuildmat.2011.05.005 DOI: https://doi.org/10.1016/j.conbuildmat.2011.05.005
[63] Chindaprasirt P., Hatanaka S., Mishima N., Yuasa Y., Chareerat T., “Effects of binder strength and aggregate size on the compressive strength and void ratio of porous concrete”, International Journal of Minerals, Metallurgy and Materials, vol. 16(6), (2009), 714–719. https://doi.org/10.1016/S1674-4799(10)60018-0
[64] Chen X., Schmitt D. R., Kessler J. A., Evans J., Kofman R., “Empirical relations between ultrasonic P-wave velocity porosity and uniaxial compressive strength”, CSEG Recorder, vol. 40(5), (2015), 24–29.
Article Details
Abstract views: 116
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.