A NEW CONCEPT OF DISCRETIZATION MODEL FOR IMAGING IMPROVING IN ULTRASOUND TRANSMISSION TOMOGRAPHY

Tomasz Rymarczyk

tomasz@rymarczyk.com
1. Research & Development Centre Netrix SA; 2. University of Economics and Innovation in Lublin (Poland)
http://orcid.org/0000-0002-3524-9151

Krzysztof Polakowski


Warsaw University of Technology (Poland)
http://orcid.org/0000-0002-2301-4910

Jan Sikora


1. Research & Development Centre Netrix SA; 2. University of Economics and Innovation in Lublin (Poland)
http://orcid.org/0000-0002-9492-5818

Abstract

In this paper a new version of discretization model for Ultrasonic Transmission Tomography is presented. The algorithm has been extensively tested for synthetic noisy data on various configurations of internal objects. In order to improve the imaging quality, the pixels/voxels have been enlarged compared to the figures inscribed in pixels/voxels however no more than figures described on the standard square pixels or cubic voxels. The proposed algorithm provides better quality of imaging.


Keywords:

Ultrasound Transmission Tomography, image reconstruction, constrained optimization, circular pixels, spherical voxels

Bartušek K., Drexler P., Fiala P., et al.: Magnetoinductive Lens for Experimental Mid-field MR Tomograph. Progress in Electromagnetics Research, Cambridge, 5–8 July 2010, 1047–1050.
  Google Scholar

Dušek J., Hladký D., Mikulka J.: Electrical Impedance Tomography Methods and Algorithms Processed with a GPU. PIERS Proceedings (Spring) 2017, 1710–1714.
DOI: https://doi.org/10.1109/PIERS.2017.8262025   Google Scholar

Kak A. C., Slaney M.: Principles of Computerized Tomographic Imaging. IEEE Press, New York 1999.
  Google Scholar

Kłosowski G., Rymarczyk T.: Using Neural Networks and Deep Learning Algorithms in Elecrical Impedance Tomography. Informatyka, Automatyka Pomiary w Gospodarce i Ochronie Środowiska – IAPGOS 3/2017, 99–102.
  Google Scholar

Kłosowski G., Rymarczyk T., Gola A.: Increasing the Reliability of Flood Embankments with Neural Imaging Method. Applied Sciences 8(9)/2018, 1457.
DOI: https://doi.org/10.3390/app8091457   Google Scholar

Koulountzios P., Rymarczyk T., Soleimani M.: Ultrasonic Tomography for automated material inspection in liquid masses. 9th World Congress on Industrial Process Tomography, Bath, Great Britain, 2–6 September 2018.
  Google Scholar

Lawson Ch. L., Hanson R. J.: Solving Least Squares Problems. Classics in Applied Mathematics 15/1995.
DOI: https://doi.org/10.1137/1.9781611971217   Google Scholar

Mikulka J.: GPU–Accelerated Reconstruction of T2 Maps in Magnetic Resonance Imaging. Measurement Science Review 4/2015, 210–218.
DOI: https://doi.org/10.1515/msr-2015-0029   Google Scholar

Ming Y., Schlaberg H. I., Hoyle B. S., Beck M. S., Lenn C.: Real-Time Ultrasound Process Tomography for Two-Phase Flow Imaging Using a Reduced Number of Transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Freq. Control 46(3)/1999.
DOI: https://doi.org/10.1109/58.764834   Google Scholar

Opieliński K. J., Gudra T.: Ultrasonic Transmission Tomography in Industrial and Biological Tomography: Theoretical Basis and Applications. Electrotechnical Institute, 2010, 265–338.
  Google Scholar

Rymarczyk T.: Tomographic Imaging in Environmental, Industrial and Medical Applications. Innovatio Press Publishing Hause, 2019.
  Google Scholar

Rymarczyk T., at all.: Sposób i układ do prowadzenia pomiarów w elektrycznej tomografii pojemnościowej. Patent P.418304, data zgłoszenia: 12.08.2016.
  Google Scholar

Rymarczyk T., Sikora J., Polakowski K., Adamkiewicz P.: Efektywny algorytm obrazowania w tomografii ultradźwiękowej i radiowej dla zagadnień dwuwymiarowych. Przegląd Elektrotechniczny 94(6)/2018, [DOI: 10.15199/48.2018.06.11].
DOI: https://doi.org/10.15199/48.2018.06.11   Google Scholar

Smolik W.: Forward Problem Solver for Image Reconstruction by Nonlinear Optimisation in Electrical Capacitance Tomography. Flow Measurement and Instrumentation 21/2010, 70–77.
DOI: https://doi.org/10.1016/j.flowmeasinst.2010.01.001   Google Scholar

Soleimani M., Mitchell C. N., Banasiak R., Wajman R., Adler A.: Four-dimensional electrical capacitance tomography imaging using experimental data. Progress in Electromagnetics Research 90/2009, 171–186.
DOI: https://doi.org/10.2528/PIER09010202   Google Scholar

http://www.mathworks.com/products/matlab/ (access: June 2018).
  Google Scholar

Download


Published
2019-12-15

Cited by

Rymarczyk, T., Polakowski, K., & Sikora, J. (2019). A NEW CONCEPT OF DISCRETIZATION MODEL FOR IMAGING IMPROVING IN ULTRASOUND TRANSMISSION TOMOGRAPHY. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 9(4), 48–51. https://doi.org/10.35784/iapgos.131

Authors

Tomasz Rymarczyk 
tomasz@rymarczyk.com
1. Research & Development Centre Netrix SA; 2. University of Economics and Innovation in Lublin Poland
http://orcid.org/0000-0002-3524-9151

Authors

Krzysztof Polakowski 

Warsaw University of Technology Poland
http://orcid.org/0000-0002-2301-4910

Authors

Jan Sikora 

1. Research & Development Centre Netrix SA; 2. University of Economics and Innovation in Lublin Poland
http://orcid.org/0000-0002-9492-5818

Statistics

Abstract views: 368
PDF downloads: 189


Most read articles by the same author(s)

1 2 3 4 > >>