A NEW CONCEPT OF DISCRETIZATION MODEL FOR IMAGING IMPROVING IN ULTRASOUND TRANSMISSION TOMOGRAPHY
Abstract
In this paper a new version of discretization model for Ultrasonic Transmission Tomography is presented. The algorithm has been extensively tested for synthetic noisy data on various configurations of internal objects. In order to improve the imaging quality, the pixels/voxels have been enlarged compared to the figures inscribed in pixels/voxels however no more than figures described on the standard square pixels or cubic voxels. The proposed algorithm provides better quality of imaging.
Keywords
Ultrasound Transmission Tomography; image reconstruction; constrained optimization; circular pixels; spherical voxels
References
Bartušek K., Drexler P., Fiala P., et al.: Magnetoinductive Lens for Experimental Mid-field MR Tomograph. Progress in Electromagnetics Research, Cambridge, 5–8 July 2010, 1047–1050.
Dušek J., Hladký D., Mikulka J.: Electrical Impedance Tomography Methods and Algorithms Processed with a GPU. PIERS Proceedings (Spring) 2017, 1710–1714. DOI: https://doi.org/10.1109/PIERS.2017.8262025
Kak A. C., Slaney M.: Principles of Computerized Tomographic Imaging. IEEE Press, New York 1999.
Kłosowski G., Rymarczyk T.: Using Neural Networks and Deep Learning Algorithms in Elecrical Impedance Tomography. Informatyka, Automatyka Pomiary w Gospodarce i Ochronie Środowiska – IAPGOS 3/2017, 99–102.
Kłosowski G., Rymarczyk T., Gola A.: Increasing the Reliability of Flood Embankments with Neural Imaging Method. Applied Sciences 8(9)/2018, 1457. DOI: https://doi.org/10.3390/app8091457
Koulountzios P., Rymarczyk T., Soleimani M.: Ultrasonic Tomography for automated material inspection in liquid masses. 9th World Congress on Industrial Process Tomography, Bath, Great Britain, 2–6 September 2018.
Lawson Ch. L., Hanson R. J.: Solving Least Squares Problems. Classics in Applied Mathematics 15/1995. DOI: https://doi.org/10.1137/1.9781611971217
Mikulka J.: GPU–Accelerated Reconstruction of T2 Maps in Magnetic Resonance Imaging. Measurement Science Review 4/2015, 210–218. DOI: https://doi.org/10.1515/msr-2015-0029
Ming Y., Schlaberg H. I., Hoyle B. S., Beck M. S., Lenn C.: Real-Time Ultrasound Process Tomography for Two-Phase Flow Imaging Using a Reduced Number of Transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Freq. Control 46(3)/1999. DOI: https://doi.org/10.1109/58.764834
Opieliński K. J., Gudra T.: Ultrasonic Transmission Tomography in Industrial and Biological Tomography: Theoretical Basis and Applications. Electrotechnical Institute, 2010, 265–338.
Rymarczyk T.: Tomographic Imaging in Environmental, Industrial and Medical Applications. Innovatio Press Publishing Hause, 2019.
Rymarczyk T., at all.: Sposób i układ do prowadzenia pomiarów w elektrycznej tomografii pojemnościowej. Patent P.418304, data zgłoszenia: 12.08.2016.
Rymarczyk T., Sikora J., Polakowski K., Adamkiewicz P.: Efektywny algorytm obrazowania w tomografii ultradźwiękowej i radiowej dla zagadnień dwuwymiarowych. Przegląd Elektrotechniczny 94(6)/2018, [DOI: 10.15199/48.2018.06.11]. DOI: https://doi.org/10.15199/48.2018.06.11
Smolik W.: Forward Problem Solver for Image Reconstruction by Nonlinear Optimisation in Electrical Capacitance Tomography. Flow Measurement and Instrumentation 21/2010, 70–77. DOI: https://doi.org/10.1016/j.flowmeasinst.2010.01.001
Soleimani M., Mitchell C. N., Banasiak R., Wajman R., Adler A.: Four-dimensional electrical capacitance tomography imaging using experimental data. Progress in Electromagnetics Research 90/2009, 171–186. DOI: https://doi.org/10.2528/PIER09010202
http://www.mathworks.com/products/matlab/ (access: June 2018).
1. Research & Development Centre Netrix SA; 2. University of Economics and Innovation in Lublin Poland
http://orcid.org/0000-0002-3524-9151
1. Research & Development Centre Netrix SA; 2. University of Economics and Innovation in Lublin Poland
http://orcid.org/0000-0002-9492-5818

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.