This paper refers to the cases of the use of Artificial Neural Networks and Convolutional Neural Networks in impedance tomography. Machine Learning methods can be used to teach computers different technical problems. The efficient use of conventional artificial neural networks in tomography is possible able to effectively visualize objects. The first step of implementation Deep Learning methods in Electrical Impedance Tomography was performed in this work.


Imaging tomography; Multilayer Perceptron; Deep Learning; Convolutional Neural Networks

Bladt E. et al.: Electron tomography based on highly limited data using a neural network reconstruction technique. Ultramicroscopy 158/2015, 81–88.

Buduma N., Locascio N.: Fundamentals of Deep Learning. Designing Next-Generation Machine Intelligence Algorithms. O'Reilly Media, 2017.

Durairaj D. C., Krishna M. C., Murugesan R.: A neural network approach for image reconstruction in electron magnetic resonance tomography. Computers in biology and medicine 37(10)/2007, 1492–1501.

Egmont-Petersen M., Ridder de D., Handels H.: Image processing with neural networks – a review. Pattern Recognition 35/2002, 2279–2301.

Minnett R. C. J. et al.: Neural network tomography: Network replication from output surface geometry. Neural Networks 24(5)/2011, 484–492.

Pelt D. M., Batenburg K. J.: Fast tomographic reconstruction from limited data using artificial neural networks. IEEE Trans. Image Process. 22/2013, 5238–5251.

Rybak G., Chaniecki Z., Grudzień K., Romanowski A., Sankowski D.: Non–invasive methods of industrial process control. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 4(3)/2014, 41–45.

Rymarczyk T.: New Methods to Determine Moisture Areas by Electrical Impedance Tomography. International Journal of Applied Electromagnetics and Mechanics 37(1-2)/2016, 79–87.

Stasiak M. et al.: Principal component analysis and artificial neural network approach to electrical impedance tomography problems approximated by multi-region boundary element method. Engineering Analysis with Boundary Elements 31(8)/2007, 713–720.

Tapson J.: Neural Networks and Stochastic Search Methods Applied to Capacitive Tomography. IFAC Proceedings Volumes 30(7)/1997, 631–634.

Tapson J.: Neural networks and stochastic search methods applied to industrial capacitive tomography. Control Engineering Practice 7(1)/1999, 117–121.

Tchorzewski P., Rymarczyk T., Sikora J.: Using Topological Algorithms to Solve Inverse Problem in Electrical Impedance Tomography. International Interdisciplinary Phd Workshop 2016, 46–50.

Wang J. et al.: Neural-network approach for optical tomography. Signal processing, 86(9)/2006, 2495–2502.


Published : 2017-09-30

Kłosowski, G., & Rymarczyk, T. (2017). USING NEURAL NETWORKS AND DEEP LEARNING ALGORITHMS IN ELECTRICAL IMPEDANCE TOMOGRAPHY. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 7(3), 99-102.

Grzegorz Kłosowski
Lublin University of Technology, Faculty of Management, Department of Organization of Enterprise  Poland
Tomasz Rymarczyk 
Research and Development Center, Netrix S.A., Lublin; University of Economics and Innovation in Lublin  Poland