APPLICATION OF CONVOLUTIONAL NEURAL NETWORKS IN WALL MOISTURE IDENTIFICATION BY EIT METHOD

Grzegorz Kłosowski

g.klosowski@pollub.pl
Lublin University of Technology, Faculty of Management (Poland)
https://orcid.org/0000-0001-7927-3674

Tomasz Rymarczyk


University of Economics and Innovation in Lublin, Institute of Computer Science and Innovative Technologies (Poland)
https://orcid.org/0000-0002-3524-9151

Abstract

The article presents the results of research in the area of using deep neural networks to identify moisture inside the walls of buildings using electrical impedance tomography. Two deep neural networks were used to transform the input measurements into images of damp places - convolutional neural networks (CNN) and recurrent long short-term memory networks LSTM. After training both models, a comparative assessment of the results obtained thanks to them was made. The conclusions show that both models are highly utilitarian in the analyzed problem. However, slightly better results were obtained with the LSTM method.


Keywords:

machine learning, deep learning, electrical impedance tomography, moisture detection in walls

Fabijańska A., Banasiak R.: Graph Convolutional Networks for Enhanced Resolution 3D Electrical Capacitance Tomography Image Reconstruction. Applied Soft Computing 110, 2021, 107608, [http://doi.org/10.1016/J.ASOC.2021.107608].
DOI: https://doi.org/10.1016/j.asoc.2021.107608   Google Scholar

Hola A.: Measuring of the Moisture Content in Brick Walls of Historical Buildings-the Overview of Methods. IOP Conference Series: Materials Science and Engineering 251(1), 2017, [http://doi.org/10.1088/1757-899X/251/1/012067].
DOI: https://doi.org/10.1088/1757-899X/251/1/012067   Google Scholar

Kłosowski G. et al.: Quality Assessment of the Neural Algorithms on the Example of EIT-UST Hybrid Tomography. Sensors 20(11), 2020, [http://doi.org/10.3390/s20113324].
DOI: https://doi.org/10.3390/s20113324   Google Scholar

Kłosowski G. et al.: The Concept of Using Lstm to Detect Moisture in Brick Walls by Means of Electrical Impedance Tomography. Energies 14(22), 2021, [http://doi.org/10.3390/en14227617].
DOI: https://doi.org/10.3390/en14227617   Google Scholar

Litti G. et al.: Hygrothermal Performance Evaluation of Traditional Brick Masonry in Historic Buildings. Energy and Buildings 105, 2015, 393–411, [http://doi.org/10.1016/j.enbuild.2015.07.049].
DOI: https://doi.org/10.1016/j.enbuild.2015.07.049   Google Scholar

Porzuczek J.: Assessment of the Spatial Distribution of Moisture Content in Granular Material Using Electrical Impedance Tomography. Sensors 19(12), 2019, 2807, [http://doi.org/10.3390/s19122807].
DOI: https://doi.org/10.3390/s19122807   Google Scholar

Romanowski A. et al.: X-Ray Imaging Analysis of Silo Flow Parameters Based on Trace Particles Using Targeted Crowdsourcing. Sensors 19(15), 2019, 3317, [http://doi.org/10.3390/s19153317].
DOI: https://doi.org/10.3390/s19153317   Google Scholar

Rymarczyk T. et al.: Area Monitoring Using the ERT Method with Multisensor Electrodes. Przegląd Elektrotechniczny 95(1), 2019, [http://doi.org/10.15199/48.2019.01.39].
DOI: https://doi.org/10.15199/48.2019.01.39   Google Scholar

Rymarczyk T., Adamkiewicz P.: Nondestructive Method to Determine Moisture Area in Historical Building. Informatics Control Measurement in Economy and Environment Protection 7(1), 2017, [http://doi.org/10.5604/01.3001.0010.4586].
DOI: https://doi.org/10.5604/01.3001.0010.4586   Google Scholar

Download


Published
2022-03-31

Cited by

Kłosowski, G., & Rymarczyk, T. (2022). APPLICATION OF CONVOLUTIONAL NEURAL NETWORKS IN WALL MOISTURE IDENTIFICATION BY EIT METHOD. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 12(1), 20–23. https://doi.org/10.35784/iapgos.2883

Authors

Grzegorz Kłosowski 
g.klosowski@pollub.pl
Lublin University of Technology, Faculty of Management Poland
https://orcid.org/0000-0001-7927-3674

Authors

Tomasz Rymarczyk 

University of Economics and Innovation in Lublin, Institute of Computer Science and Innovative Technologies Poland
https://orcid.org/0000-0002-3524-9151

Statistics

Abstract views: 273
PDF downloads: 191


Most read articles by the same author(s)

1 2 3 4 > >>